DOI QR코드

DOI QR Code

A HOMOTOPY CONTINUATION METHOD FOR SOLVING A MATRIX EQUATION

  • Li, Jing (School of Mathematics Shandong University) ;
  • Zhang, Yuhai (School of Mathematics Shandong University)
  • Received : 2017.03.21
  • Accepted : 2017.11.30
  • Published : 2018.03.01

Abstract

In this paper, a homotopy continuation method for obtaining the unique Hermitian positive definite solution of the nonlinear matrix equation $X-{\sum_{i=1}^{m}}A^{\ast}_iX^{-p_i}A_i=I$ with $p_i$ > 1 is proposed, which does not depend on a good initial approximation to the solution of matrix equation.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China

References

  1. W. N. Anderson, Jr., T. D. Morley, and G. E. Trapp, Positive solutions to $X=A-BX^{-1}B^{\ast}$, Linear Algebra Appl. 134 (1990), 53-62. https://doi.org/10.1016/0024-3795(90)90005-W
  2. J. H. Avila, Jr., The feasibility of continuation methods for nonlinear equations, SIAM J. Numer. Anal. 11 (1974), 102-122. https://doi.org/10.1137/0711012
  3. B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal. 7 (1970), 627-656. https://doi.org/10.1137/0707049
  4. X. Duan, A. Liao, and B. Tang, On the nonlinear matrix equation $X-{\Sigma}^m_{i=1}A^{\ast}_iX^{{\delta}i}A_i$ = Q, Linear Algebra Appl. 429 (2008), no. 1, 110-121. https://doi.org/10.1016/j.laa.2008.02.014
  5. J. C. Engwerda, On the existence of a positive definite solution of the matrix equation $X+A^TX^{-1}A=I$, Linear Algebra Appl. 194 (1993), 91-108. https://doi.org/10.1016/0024-3795(93)90115-5
  6. C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999), no. 228, 1589-1603. https://doi.org/10.1090/S0025-5718-99-01122-9
  7. V. I. Hasanov, Positive definite solutions of the matrix equations $X{\pm}A^{\ast}X^{-q}A=Q$, Linear Algebra Appl. 404 (2005), 166-182. https://doi.org/10.1016/j.laa.2005.02.024
  8. P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
  9. J. Li, Solutions and improved perturbation analysis for the matrix equation $X-A^{\ast}X^{-p}A=Q$ (p > 0), Abatr. Appl. Anal. 2013 (2013); DOI 10.1155/2013/575964.
  10. J. Li and Y. Zhang, Perturbation analysis of the matrix equation $X-A^{\ast}X^{-p}A=Q$, Linear Algebra Appl. 431 (2009), no. 9, 1489-1501. https://doi.org/10.1016/j.laa.2009.05.013
  11. J. Li and Y. Zhang, On the existence of positive definite solutions of a nonlinear matrix equation, Taiwanese J. Math. 18 (2014), no. 5, 1345-1364. https://doi.org/10.11650/tjm.18.2014.3747
  12. Y. Lim, Solving the nonlinear matrix equation $X=Q+{\Sigma}^m_{i=1}M_iX^{{\delta}i}M^{\ast}_i$ via a contraction principle, Linear Algebra Appl. 430 (2009), no. 4, 1380-1383. https://doi.org/10.1016/j.laa.2008.10.034
  13. X.-G. Liu and H. Gao, On the positive definite solutions of the matrix equations $X^s{\pm}A^TX^{-t}A=I_n$, Linear Algebra Appl. 368 (2003), 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4
  14. Y. C. Mei, Uniqueness and numerical method for Hermitian positive definite solutions of nonlinear matrix equation $X-A^{\ast}X^{-q}A=I$ (q > 1), Master's Thesis, Shandong Universiteit, Jinan, 2013.
  15. J. F. Wang, Y. H. Zhang, and B. R. Zhu, The Hermitian positive definite solutions of the matrix equation $X+A^{\ast}X^{-q}A=I$ (q > 0), Chinese J. Numer. Math. Appl. 26 (2004), no. 2, 14-27; translated from Math. Numer. Sin. 26 (2004), no. 1, 61-72.
  16. S. F. Xu, Matrix computation from control system, Higher education press, Beijing, 2011
  17. X. Y. Yin and S. Y. Liu, Positive definite solutions of the matrix equations $X{\pm}A^{\ast}X^{-q}A=Q$ $(q{\geq}1)$, Comput. Math. Appl. 59 (2010), 3727-3739. https://doi.org/10.1016/j.camwa.2010.04.005
  18. X. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci. Comput. 17 (1996), no. 5, 1167-1174. https://doi.org/10.1137/S1064827594277041
  19. X. Zhan and J. Xie, On the matrix equation $X+A^{T}X^{-1}A=I$, Linear Algebra Appl. 247 (1996), 337-345. https://doi.org/10.1016/0024-3795(95)00120-4
  20. F. Zhang, Matrix Theory, Universitext, Springer-Verlag, New York, 1999.