References
- Anselmo, V., and Ubertini, L. (1979). "Transfer function-noise model applied to flow forecasting." Hydrological Sciences-Bulletin, Vol. 24, No. 3, pp. 353-359. https://doi.org/10.1080/02626667909491874
- Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1976). Time series analysis: forecasting and control, Prentice-Hall International, Inc.
- Choi, S. Y., and Han, K. Y. (2011). "Comparison and analysis for performance of flood stage prediction regression model according to type of input rainfall." Korean Society of Hazard Mitigation, Vol. 11, No. 5, pp. 313-325. https://doi.org/10.9798/KOSHAM.2011.11.5.313
- Chung, G., Park, H. S., Sung, J. Y., and Kim, H. J. (2012). "Determination and evaluation of optimal parameters in storage function method using SCE-UA." Journal of Korea Water Resources Association, Vol. 45, No. 11, pp. 1169-1186. https://doi.org/10.3741/JKWRA.2012.45.11.1169
- Hipel, K. W. (1994). Developments in water science: time series modelling of water resources and environmental systems, Elsevier.
- Jeong, D. K., and Lee, B. H. (2010). "Development of urban flood water level forecasting model using regression method." Journal of Korea Water Resources Association, Vol. 30, No. 4-B, pp. 347-359.
- Kang, K. S., and Heo, J. H. (2006). "Comparative study on method of stochastic modeling in Han river basin." Proceedings 2006 Korea Water Rersources Conference, Jeju, Korea, pp. 669-673.
- Kimura, T. (1961). The flood runoff analysis method by the storage function model. The Public Works. Research Institute, Ministry of Construction.
- Kumar, A. P. S., Sudheer, K. P., Jain, S. K., and Agarwal P. K. (2005). "Rainfall-runoff modeling using artificial neural networks: comparison of network types." Hydrological Processes, Vol. 19, No. 6, pp. 1277-1291. https://doi.org/10.1002/hyp.5581
- Lohani, A. K., Goel, N. K., and Bhatia, K. K. S. (2011). "Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modeling under different input domains." Hydrological Processes, Vol. 25, No. 2, pp. 175-193. https://doi.org/10.1002/hyp.7831
- Park, J., Kwon, J. H, Kim, T., and Heo, J. H. (2014). "Future inflow simulation considering the uncertainties of TFN model and GCMs on Chungju dam basin." Journal of Water Resources Association, Vol. 47, No. 2, pp. 135-143. https://doi.org/10.3741/JKWRA.2014.47.2.135
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
- Salas, J. D., Delleur, J. W., YevJevich, V., and Lane, W. L.(1980). Applied modeling of hydrologic time series, Water Resources Publications, Littleton, Colorado, pp. 461-473.
- Shamseldin, A. Y. (2005). River basin modelling for flood risk mitigation.
- Song, J. H., Chung, G., and Kang, M. S. (2014). "An introduction of a parameter optimization method for watershed models using MATLAB." Rural Resources, Vol. 56, No. 2, pp. 16-25 (In Korean).
- Song, J. H., Song, I., Kim, J. T., and Kang, M. S. (2015). "Simulation of agricultural water supply considering yearly variation of irrigation efficiency." Journal of Korea Water Resources Association, Vol. 48, No. 6 pp. 425-438 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.6.425
- Tokar, A. S., and Johnson, A. (1999). "Rainfall-runoff modeling using artificial neural networks. Journal of Hydrology, Vol. 4, No. 3, pp. 232-239.
- Tokar, A. S., and Markus, M. (2000). "Precipitation-runoff modeling using artificial neural networks and conceptual models." Journal of Hydrology, Vol. 5, No. 2, pp. 156-161.
- Wood, E. F., and O'connell, P. E. (1985). Hydrological forecasting. A Wiley-Interscience Publication, pp. 505-558.
- Yoon, K., and Kim, T. (2003). "Development of the multiple regression runoff model using rainfall forecast data by radar." Proceedings 2003 The Korean Society of Civil Engineers Conference, pp. 2187-2198.
- Young, P. (1984). Recursive estimation and time series analysis. Springer, Berlin, pp. 198-228.