DOI QR코드

DOI QR Code

Assessment and merging technique for GPM satellite precipitation product using ground based measurement

GPM 위성 강우자료의 검증과 지상관측 자료를 통한 강우 보정 기법

  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Park, Jongmin (Department of Civil and Environmental Enginnering, University of Maryland) ;
  • Kim, Kiyoung (Hydrological Survey Department, Korea Institute of Hydrological Survey) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 백종진 (성균관대학교 건설환경연구소) ;
  • 박종민 (메릴랜드 건설환경공학과) ;
  • 김기영 (한국수자원조사기술원 하천조사실) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Received : 2017.10.30
  • Accepted : 2017.11.27
  • Published : 2018.02.28

Abstract

Precipitation is a key variable to enhance the understanding of water cycle system and secure and manage the water resources efficiently. In this study, we evaluated the feasibility of GPM precipitation datasets through comparison with the 92 ASOS sites in South Korea during 2015. Additionally, three merging techniques (i.e., Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging) were applied to improve accuracy of precipitation by fusing the advantages from point and satellite-based datasets. The results of this study are as follows. 1) GPM dataset indicated slightly overestimation with compared ASOS dataset, especially high uncertainties in summer season. 2) Validation of three merging techniques through jackniffe cross-validation showed that uncertainty were decreased as the spatial resolution increased. Especially, conditional merging showed the best performance among three methods.

강우는 물순환 시스템을 이해를 증가 시킬 뿐만 아니라, 효율적인 수자원 확보 및 관리에 있어서 가장 핵심적인 인자이다. 본 연구는 2015년을 대상으로 한반도에서의 92개의 ASOS 지점자료와 최근에 발사된 GPM 위성강우 자료의 비교를 통하여 활용가능성을 평가하였다. 또한 지점 자료의 장점과 인공위성 자료의 장점을 융합함으로써 보다 개선된 강우자료를 산출하기 위해 3가지의 상세화 방법(Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging)들을 적용하였다. 이 연구에서 도출된 결과는 다음과 같다. 1) ASOS 자료와의 검증을 통해 GPM 강우자료가 약간 과대산정되는 편향을 가지고 있는 것을 확인하였으며, 특히 여름 기간에 오차가 높게 발생하는 것으로 나타났다. 2) Jackknife 방법을 통하여 각 합성방법에 대해서 검증하였을 때, 공간해상도가 높아짐에 따라서 오차가 줄어드는 것을 확인하였으며, 상세화 방법 중 conditional merging 방법이 가장 좋은 성능을 나타내었다.

Keywords

References

  1. Baik, J. J., and Choi, M. (2015). "Spatio-temporal variability of remotely sensed precipitation data from COMS and TRMM: case study of Korean peninsula in East Asia." Advances in Space Research, Vol. 56, No. 6, pp. 1125-1138. https://doi.org/10.1016/j.asr.2015.06.015
  2. Baik, J. J., and Choi, M. (2016). "Geospatial blending to improve spatial mapping of precipitation with high spatial resolution by merging satellite based and ground-based data." Hydrological Processes, Vol. 30, No. 16, pp. 2789-2803. https://doi.org/10.1002/hyp.10786
  3. Berndt, C., Rabiei, E., and Haberlandt, U. (2014). "Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios." Journal of Hydrology, Vol. 508, pp. 88-101. https://doi.org/10.1016/j.jhydrol.2013.10.028
  4. Duan, Z., and Bastiaanssen, W. G. M. (2013). "First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure." Remote Sensing of Environment, Vol. 131, pp. 1-13. https://doi.org/10.1016/j.rse.2012.12.002
  5. Gaona, M. R., Overeem, A., Leijnse, H., and Uijlenhoet, R. (2016). "First-year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (V03D)." Journal of Hydrometeorology, Vol. 17, No. 11, pp. 2799-2814. https://doi.org/10.1175/JHM-D-16-0087.1
  6. Goudenhoofdt, E., and Delobbe, L. (2009). "Evaluation of radar gauge merging methods for quantitative precipitation estimates." Hydrology and Earth System Sciences, Vol. 13, No. 2, pp. 195-203. https://doi.org/10.5194/hess-13-195-2009
  7. Hong, S. J., Kim, B. S., and Hahm, C. H. (2010). "Spatial-temporal interpolation of rainfall using rain gauge and radar." Journal of the Korean Society for Geospatial Information Science, Vol. 18, No. 3, pp. 37-48.
  8. Hwang, S. W., Park, S. W., Jang, M. W., and Cho, Y. K. (2006). "Spatial distribution modeling of daily rainfall using co-kriging method" Journal of Korea Water Resources Association, Vol. 39, No. 8, pp. 669-676. https://doi.org/10.3741/JKWRA.2006.39.8.669
  9. Hwang, Y. S., Jung, Y. H., Lim, K. S., and Heo, J. H. (2010). "Comparison of daily rainfall interpolation techniques and development of two step technique for rainfall-runoff modeling." Journal of Korea Water Resources Association, Vol. 43, No. 12, pp. 1083-1091. https://doi.org/10.3741/JKWRA.2010.43.12.1083
  10. Jang, C.-H., Kwon, H.-J., Koh, D.-K., and Kim, S.-J. (2003). "Adjustment of TRM/PR data by ground observed rainfall data and SCS runoff estimation: Yongdam-dam watershed." Journal of Korea Water Resources Association, Vol. 36, No. 4, pp. 647-659. https://doi.org/10.3741/JKWRA.2003.36.4.647
  11. Jia, S., Zhu, W., Lű, A., and Yan, T. (2011). "A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam basin of China." Remote Sensing of Environment, Vol. 115, No. 12, pp. 3069-3079. https://doi.org/10.1016/j.rse.2011.06.009
  12. Jin, K. W. (2015). "NASA's space-borne microwave remote sensing missions of GPM and SMAP for a global water cycle research." Current Industrial and Technological Trends in Aerospace, Vol. 13, No. 1, pp. 96-106.
  13. Kang, N., Joo, H., Lee, M., and Kim, H. S. (2017). "Generation of radar rainfall ensemble using probabilistic approach." Journal of Korea Water Resources Association, Vol. 50, No. 3, pp. 115-167.
  14. Kim, J. P., Kim, G., and Lee, W. S. (2012). "Estimation of monthly areal precipitation using daymet and PRISM." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 5, pp. 83-90. https://doi.org/10.9798/KOSHAM.2012.12.5.083
  15. Kim, J. P., Lee, W. S., Cho, H., and Kim, G. (2014a). "Estimation of high resolution daily precipitation using a modified PRISM model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 4, pp. 1139-1150. https://doi.org/10.12652/Ksce.2014.34.4.1139
  16. Kim, S. H., Kim, K. T., and Choi, Y. S. (2014). "Runoff estimation using rainfalls derived from multi-satellite images." Journal of the Korean Association of Geographic Information Studies, Vol. 17, No. 1, pp. 107-118. https://doi.org/10.11108/kagis.2014.17.1.107
  17. Kim, S. J., Shin, S. C., and Suh, A. S. (1999). "Satellite rainfall monitoring: recent progress and its potential applicability." Korean Journal of Agricultural and Forest Meteorology, Vol. 1, No. 2, pp. 142-150.
  18. Kim, S. S., Jung, C. G., Park, J. Y., Jung, S. W., and Kim, S. J. (2013). "Parameter estimation of Vflo TM distributed rainfall-runoff model by areal rainfall calculation methods-for Dongchon watershed of Geumho river." Journal of The Korean Society of Agricultural Engineers, Vol. 55, No. 1, pp. 9-15. https://doi.org/10.5389/KSAE.2013.55.1.009
  19. Laurent, L., Audois, P., Marie-Joseph, I., Becker, M., and Seyler, F. (2013). "Calibration of TRMM 3B42 with geographical differential analysis over North Amazonia." Proceedings Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, pp. 2234-2237.
  20. Lee, J., Choi, M., and Kim, D. (2016). "Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique." Journal of Korea Water Resources Association, Vol. 49, No. 3, pp. 263-273, doi: 10.3741/JKWRA.2016.49.3.263.
  21. Liu, Z. (2015). "Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products." Atmospheric Research, Vol. 153, pp. 119-133. https://doi.org/10.1016/j.atmosres.2014.07.032
  22. Milewski, A., Elkadiri, R., and Durham, M. (2015). "Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco." Remote Sensing, Vol. 7, No. 5, pp. 5697-5717. https://doi.org/10.3390/rs70505697
  23. Park, M., Park, C., Shin, K. I., and Yoo, C. (2010). "On proper variograms of daily rainfall data." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 6, pp. 525-532.
  24. Seo, E. K. (2012). "Rainfall characteristics in the tropical oceans: observations using TRMM TMI and PR." Journal of Korean Earth Science Society, Vol. 33, No. 2, pp. 113-125. https://doi.org/10.5467/JKESS.2012.33.2.113
  25. Sharifi, E., Steinacker, R., and Saghafian, B. (2016). "Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results." Remote Sens, Vol. 8, No. 2, p. 135, doi:10.3390/rs8020135.
  26. Sohn, B. J., Nam, J. C., Park, S. K., Ahn, M. H., Yoo, J. M., Lee, H. S., Chang, D. E., Ho, C. H., Bae, B. H., Kim, S. J., Oh, H. J., Park, S. C., and Kim, J. H. (2005). "Proposing research and development activities for utilizing the Global Precipitation Measurement (GPM)." Atmosphere, Vol. 15, No. 1, pp. 47-57.
  27. Wang, W., and Lu, H. (2016) "Evaluation and comparison of newest GPM and TRMM products over Mekong river basin at daily scale." Proceedings Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, pp. 613-616.
  28. Worqlul, A. W., Maathuis, B., Adem, A. A., Demissie, S. S., Langan, S., and Steenhuis, T. S. (2014). "Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with groundobserved data for the Lake Tana basin in Ethiopia." Hydrology and Earth System Sciences, Vol. 18, No. 12, pp. 4871-4881. https://doi.org/10.5194/hess-18-4871-2014