DOI QR코드

DOI QR Code

Electrical Properties of Supercapacitor Based on Dispersion Controlled Graphene Oxide According to the Change of Solution State by Washing Process

Washing을 통한 상분리 변화에 따른 그래핀 산화물의 분산도 조절 및 슈퍼커패시터의 특성에 관한 연구

  • Sul, Ji-Hwan (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • You, In-kyu (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kang, Seok Hun (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Bit-Na (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, In Gyoo (ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute)
  • 설지환 (한국전자통신연구원 ICT소재연구그룹) ;
  • 유인규 (한국전자통신연구원 ICT소재연구그룹) ;
  • 강석훈 (한국전자통신연구원 ICT소재연구그룹) ;
  • 김빛나 (한국전자통신연구원 ICT소재연구그룹) ;
  • 김인규 (한국전자통신연구원 ICT소재연구그룹)
  • Received : 2017.11.10
  • Accepted : 2017.12.26
  • Published : 2018.02.01

Abstract

Recently, there has been an increasing interest in the use of graphene as electrode materials for supercapacitors. In this regard, graphene oxide (GO) films were prepared using GO slurry obtained by dispersing GO powder in deionized (DI) water. The degree of dispersion of GO powder in DI water depends on the concentration of GO slurry, pH, impurity content, GO particle size, types of functional groups contained in GO, and manufacturing method of GO powder. In this study, the dispersivity of the GO powder was improved by adjusting the pH using only DI water (without additives), and a uniform GO film was obtained. The GO film was reduced by exposure to xenon intense pulsed light for a few milliseconds, and the reduced GO film was used as electrodes of a supercapacitor. The supercapacitor was characterized using cyclic voltammetry (CV), charge-discharge cycle, and electrochemical impedance spectroscopy measurements, and the specific capacitance of the supercapacitor was found to be ~140 F/g from the CV data.

Keywords

References

  1. Y. T. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 532 (2009). [DOI: https://doi.org/10.4313/jkem.2009.22.6.532]
  2. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006. 02.065]
  3. E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001). [DOI: https://doi.org/10.1016/s0008-6223(00)00183-4]
  4. B. Fang and L. Binder, J. Power Sources, 163, 616 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006.09.014]
  5. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, Nano Lett., 10, 4863 (2010). [DOI: https://doi.org/10.1021/nl102661q]
  6. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008). [DOI: https://doi.org/10.1021/nl802558y]
  7. J. Texter, Curr. Opin. Colloid Interface Sci., 19, 163 (2014). [DOI: https://doi.org/10.1016/j.cocis.2014.04.004]
  8. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Langmuir, 24, 10560 (2008). [DOI: https://doi.org/10.1021/la801744a]
  9. H. Bai, C. Li, X. Wang, and G. Shi, J. Phys. Chem. C, 115, 5545 (2011). [DOI: https://doi.org/10.1021/jp1120299]
  10. X. Hu, Y. Yu, W. Hou, J. Zhou, and L. Song, Appl. Surf. Sci., 273, 118 (2013). [DOI: https://doi.org/10.1016/j.apsusc.2013.01.201]
  11. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, J. Colloid Interface Sci., 430, 108 (2014). [DOI: https://doi.org/10.1016/j.jcis.2014.05.033]
  12. S. H. Park and H. S. Kim, Nanotechnology, 26, 205601 (2015). [DOI: https://doi.org/10.1088/0957-4484/26/20/205601]
  13. Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, Adv. Opt. Mater., 2, 10 (2014). [DOI: https://doi.org/10.1002/adom.201300317]
  14. S. Gilje, S. Dubin, A. Badakhshan, J. Farrar. S. A. Danczyk, and R. B. Kaner, Adv. Mater., 22, 419 (2010). [DOI: https://doi.org/10.1002/adma.200901902]
  15. B. Konkena and S. Vasudevan, J. Phys. Chem. Lett., 3, 867 (2012). [DOI: https://doi.org/10.1021/jz300236w]
  16. R. J. Hunter, Foundations of Colloid Science (Oxford University Press, New York, 2001) p. 376.