DOI QR코드

DOI QR Code

PEDOT:PSS and Graphene Oxide Composite Hydrogen Gas Sensor

전도성 고분자 PEDOT:PSS와 산화 그래핀 복합물 수소 가스 센서

  • Maeng, Sunglyul (Department of Electrical and Electronic Engineering, Woosuk University)
  • 맹성렬 (우석대학교 전기전자공학과)
  • Received : 2017.12.06
  • Accepted : 2017.12.28
  • Published : 2018.02.01

Abstract

The power law is very important in gas sensing for the determination of gas concentration. In this study, the resistance of a gas sensor based on poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate+graphene oxide composite was found to exhibit a power law dependence on hydrogen concentration at $150^{\circ}C$. Experiments were carried out in the gas concentration range of 30~180 ppm at which the sensor showed a sensitivity of 6~9% with a response and recovery time of 30s.

Keywords

References

  1. P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd Edition (John Wiley. Sons: Wiley Interscience, 2007) p. 402.
  2. A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, Nanoscale, 1, 382 (2009). [DOI: https://doi.org/10.1039/B9NR00015A]
  3. Y. Dan, Y. Cao, T. E. Mallouk, A. T. Johnson, and S. Evoy, Sens. Actuators, B, 125, 55 (2007). [DOI: https://doi.org/10.1016/j.snb.2007.01.042]
  4. R. Memarzadeh, S. Javadpour, F. Panahi, and Y. B. Shim, Proc. The 14th International Meeting on Chemical Sensors (IMCS) (Nuremberg, Germany, 2012) p. 1105.
  5. J. Choi, J. Lee, J. Choi, D. Jung, and S. E. Shim, Synth. Met., 160, 1415 (2010). [DOI: https://doi.org/10.1016/j.synthmet.2010.04.021]
  6. R. Mangu, S. Rajaputra, and V. P. Singh, Nanotechnology, 22, 215502 (2011). [DOI: https://doi.org/10.1088/0957-4484/22/21/215502]
  7. J. Jian, X. Guo, L. Lin, Q. Cai, J. Cheng, and J. Li, Sens. Actuators, B, 178, 279 (2013). [DOI: https://doi.org/10.1016/j.snb.2012.12.085]
  8. M.A.L.D. Reis, F. Thomazi, J. D. Nero, and L. S. Roman, Sensors, 10, 2812 (2010). [DOI: https://doi.org/10.3390/s100402812]
  9. J. Wang, Y. Kwak, I. Y. Lee, S. Maeng, and G. H. Kim, Carbon, 50, 4061 (2012). [DOI: https://doi.org/10.1016/j.carbon.2012.04.053]
  10. J. Wang, B. Singh, J. H. Park, S. Rathi, I. Y. Lee, S. Maeng, H. I. Joh, C. H. Lee, and G. H. Kim, Sens. Actuators, B, 194, 296 (2014). [DOI: https://doi.org/10.1016/j.snb.2013.12.009]
  11. Y. Zheng, D. Lee, H. Y. Koo, and S. Maeng, Carbon, 81, 54 (2015). [DOI: https://doi.org/10.1016/j.carbon.2014.09.023]
  12. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010). [DOI: https://doi.org/10.1021/nn1006368]
  13. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Carbon, 49, 3019 (2011). [DOI: https://doi.org/10.1016/j.carbon.2011.02.071]
  14. B. Friedel, P. E. Keivanidis, T.J.K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Macromolecules, 42, 6741 (2009). [DOI: https://doi.org/10.1021/ma901182u]
  15. S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Carbon, 44, 3342 (2006). [DOI: https://doi.org/10.1016/j.carbon.2006.06.004]