References
- Abdalla, J.A., Attom, M.F. and Hawileh, R. (2015), "Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network", Environ. Earth Sci., 73(9), 5463-5477. https://doi.org/10.1007/s12665-014-3800-x
- Aksoy, C.O., Uyar, G.G. and Ozcelik, Y. (2016), "Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability", Struct. Eng. Mech., 60(5),809-828. https://doi.org/10.12989/sem.2016.60.5.809
- Amanifard, N., Nariman-Zadeh, N., Farahani, M.H. and Khalkhali, A. (2008), "Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks", Energy Convers. Manage., 49(10), 2588-2594. https://doi.org/10.1016/j.enconman.2008.05.025
- Bhattacharya, B. and Solomatine, D.P. (2005), "Neural networks and M5 model trees in modelling water level-discharge relationship", Neurocomput., 63, 381-396. https://doi.org/10.1016/j.neucom.2004.04.016
- Bishop, A.W. and Morgenstern, N.R. (1960), "Stability coefficients for earth slopes", Geotechnique, 10(4), 129-153. https://doi.org/10.1680/geot.1960.10.4.129
- Cheng, M.Y. and Hoang, N.D. (2015), "A swarm-optimized fuzzy instance-based learning approach for predicting slope collapses in mountain road", Knowl. Based Syst., 76, 256-263. https://doi.org/10.1016/j.knosys.2014.12.022
- Cheng, M.Y. and Hoang, N.D. (2015), "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier", Nat. Hazards, 78(3), 1961-1978. https://doi.org/10.1007/s11069-015-1813-8
- Cheng, M.Y., Roy, A. F. and Chen, K.L. (2012), "Evolutionary risk preference inference model using fuzzy support vector machine for road slope collapse prediction", Expert Syst. Appl., 39(2), 1737-1746. https://doi.org/10.1016/j.eswa.2011.08.081
- Cho, S.E. (2009), "Probabilistic stability analyses of slopes using the ANN-based response surface", Comput. Geotech., 36(5), 787-797. https://doi.org/10.1016/j.compgeo.2009.01.003
- Das, S.K., Biswal, R.K., Sivakugan, N. and Das, B. (2011), "Classification of slopes and prediction of factor of safety using differential evolution neural networks", Environ. Earth Sci., 64(1), 201-210. https://doi.org/10.1007/s12665-010-0839-1
- Erzin, Y. and Cetin, T. (2014), "The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions", Geomech. Eng., 6(1), 1-15. https://doi.org/10.12989/gae.2014.6.1.001
- Feng, X.T., Wang, Y. and Lu, S. (1995), "Neural network estimation of slope stability", J. Eng. Geol., 3(4), 54-61.
- Fleurisson, J.A. and Cojean, R. (2014), Error Reduction in Slope Stability Assessment, in Surface Mining Methods, Technology and Systems.
- Florkiewicz, A. and Kubzdela, A. (2013), "Factor of safety in limit analysis of slopes", Geomech. Eng., 5(5), 485-497. https://doi.org/10.12989/gae.2013.5.5.485
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annal. Stat., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Friedman, J.H. and Fisher, N.I. (1999), "Bump hunting in highdimensional data", Stat. Comput., 9(2), 123-143.
- Hoang, N.D. and Pham, A.D. (2016), "Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis", Expert Syst. Appl., 46, 60-68. https://doi.org/10.1016/j.eswa.2015.10.020
- Ivakhnenko, A. (1971), "Polynomial theory of complex systems", IEEE Trans. Syst. Man Cybernet., (4), 364-378.
- Ivakhnenko, A.G. and Ivakhnenko, G.A. (2000), "Problems of further development of the group method of data handling algorithms. Part I", Pattern Recogn. Image Anal. C/C Raspoznavaniye Obrazov Analizizobrazhenii, 10(2), 187-194.
- Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S. (2017), M5' and Mars Based Prediction Models for Properties of Self-Compacting Concrete Containing Fly Ash, in Periodica Polytechnica Civil Engineering.
- Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2016), "Derivation of new equations for prediction of principal groundmotion parameters using M5′ algorithm", J. Earthq. Eng., 20(6), 910-930. https://doi.org/10.1080/13632469.2015.1104758
- Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2017), "New model derivation for the bond behavior of NSM FRP systems in concrete", Iran. J. Sci. Technol. Trans. Civ. Eng., 41(3), 249-262.
- Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2016), "Patient rule-induction method for liquefaction potential assessment based on CPT data", Bull. Eng. Geol. Environ., 1-17.
- Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2017), "M5' algorithm for shear strength prediction of HSC slender beams without web reinforcement", J. Model. Optim., 7(1), 48-53.
- Kostic, S., Vasovic, N. and Sunaric, D. (2016), "Slope stability analysis based on experimental design", J. Geomech., 16(5), 04016009. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000551
- Lee, T.L., Lin, H.M. and Lu, Y.P. (2009), "Assessment of highway slope failure using neural networks", J. Zhejiang Univ. Sci. A, 10(1), 101-108. https://doi.org/10.1631/jzus.A0820265
- Li, J. and F. Wang (2010), Study on the Forecasting Models of Slope Stability Under Data Mining, in Earth and Space: Engineering, Science, Construction, and Operations in Challenging Environments, 765-776.
- Lin, H.M., Chang, S.K., Wu, J.H. and Juang, C.H. (2009), "Neural network-based model for assessing failure potential of highway slopes in the Alishan, Taiwan Area: Pre- and postearthquake investigation", Eng. Geol., 104(3-4), 280-289. https://doi.org/10.1016/j.enggeo.2008.11.007
- Lu, P. and Rosenbaum, M.S. (2003), "Artificial neural networks and grey systems for the prediction of slope stability", Nat. Hazards, 30(3), 383-398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27
- Nannings, B., Abu-Hanna, A. and De Jonge, E. (2008), "Applying PRIM (Patient Rule Induction Method) and logistic regression for selecting high-risk subgroups in very elderly ICU patients", J. Med. Inform., 77(4), 272-279. https://doi.org/10.1016/j.ijmedinf.2007.06.007
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings of the 5th Australian Joint conference on Artificial Intelligence, Hobart, Tasmania, Australia, November.
- Sah, N.K., Sheorey, P.R. and Upadhyaya, L.N. (1994), "Maximum likelihood estimation of slope stability", J. Rock Mech. Min. Sci. Geomech. Abstr., 31(1), 47-53. https://doi.org/10.1016/0148-9062(94)92314-0
- Samui, P. (2008), "Slope stability analysis: A support vector machine approach", Environ. Geol., 56(2), 255-267. https://doi.org/10.1007/s00254-007-1161-4
- Samui, P. (2011), "Utilization of relevance vector machine for rock slope stability analysis", J. Geotech. Eng., 5(3), 351-355. https://doi.org/10.3328/IJGE.2011.05.03.351-355
- Samui, P. and Kothari, D.P. (2011), "Utilization of a least square support vector machine (LSSVM) for slope stability analysis", Scientia Iranica, 18(1), 53-58. https://doi.org/10.1016/j.scient.2011.03.007
- Samui, P., Lansivaara, T. and Kim, D. (2011), "Utilization relevance vector machine for slope reliability analysis", Appl. Soft Comput., 11(5), 4036-4040. https://doi.org/10.1016/j.asoc.2011.03.009
- See, L. and Openshaw, S. (1999), "Applying soft computing approaches to river level forecasting", Hydrol. Sci. J., 44(5), 763-778. https://doi.org/10.1080/02626669909492272
- Sinha, A.K. and Sengupta, M. (1989), "Expert system approach to slope stability", Min. Sci. Technol., 8(1), 21-29. https://doi.org/10.1016/S0167-9031(89)90880-3
- Wang, H.B., Xu, W.Y. and Xu, R.C. (2005), "Slope stability evaluation using back propagation neural networks", Eng. Geol., 80(3-4), 302-315. https://doi.org/10.1016/j.enggeo.2005.06.005
- Wang, Y. and Witten, I.H. (1996), Induction of Model Trees for Predicting Continuous Classes, University of Waikato, Hamilton, New Zealand.
- Witten, I.H. and Frank, E. (2005), Data Mining: Practical machine Learning Tools and Techniques, Morgan Kaufmann.
- Xiaoming, Y. and Xibing, L. (2011), "Bayes discriminant analysis method for predicting the stability of open pit slope" Proceedings of the 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Lushan, China, April.
- Zhang, Z., Liu, Z., Zheng, L. and Zhang, Y. (2014), "Development of an adaptive relevance vector machine approach for slope stability inference", Neural Comput. Appl., 25(7), 2025-2035. https://doi.org/10.1007/s00521-014-1690-1
- Zhao, H., Yin, S. and Ru, Z. (2012), "Relevance vector machine applied to slope stability analysis", J. Numer. Anal. Meth. Geomech., 36(5), 643-652. https://doi.org/10.1002/nag.1037
- Zhou, K.P. and Chen, Z.Q. (2009), "Stability prediction of tailing dam slope based on neural network pattern recognition", Proceedings of the 2nd International Conference on Environmental and Computer Science, Dubai, U.A.E., December.
Cited by
- Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods vol.6, pp.2, 2018, https://doi.org/10.12989/acd.2021.6.2.135
- Explicit finite element analysis of slope stability by strength reduction vol.26, pp.2, 2018, https://doi.org/10.12989/gae.2021.26.2.133