DOI QR코드

DOI QR Code

Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs

  • Al-Deen, Safat (School of Engineering and Information Technology, The University of New South Wales)
  • 투고 : 2017.07.10
  • 심사 : 2017.11.07
  • 발행 : 2018.02.10

초록

Drying shrinkage in concrete caused by drying and the associated decrease in moisture content is one of the most important factors influencing the long-term deflection of steel-concrete composite slabs. The presence of profiled steel decking at the bottom of the composite slab causes non-uniform drying from top and bottom of the slab resulting non-uniform drying shrinkage. In this paper, a hydro-mechanical analysis method is proposed to simulate the development of non-uniform shrinkage through the depth of the composite slab. It also demonstrates how this proposed analysis method can be used in conjunction with previously presented structural analysis model to calculate the effects of non-uniform shrinkage on the long-term deflection of the slab. The method uses concrete moisture diffusion model to simulate the non-uniform drying of composite slab. Then mechanical models are used to calculate resulting shrinkage strain from non-uniform drying and its effect on the long-term behaviour of the composite slabs. The performance of the proposed analysis method is validated against experimental data.

키워드

참고문헌

  1. Abdullah, R. and Easterling, S.W. (2009), "New evaluation and modeling procedure for horizontal shear bond in composite slabs", J. Constr. Steel Res., 65(4), 891-899. https://doi.org/10.1016/j.jcsr.2008.10.009
  2. (fib), I.F.f.S.C. (2010), fib Model Code for Concrete Structures 2010, Ernst & Sohn.
  3. Airumyan, E., Belyaev, V. and Rumyancev, I. (1990), "Efficient embossment for corrugated steel sheeting", Proceedings of IABSE Symposium on Mixed Structures Including New Materials, Brussels, Belgium, September.
  4. Al-deen, S. and Ranzi, G. (2015), "Effects of non-uniform shrinkage on the long-term behaviour of composite steel-concrete slabs", Int. J. Steel Struct., 15(2), 415-432. https://doi.org/10.1007/s13296-015-6012-7
  5. Al-deen, S., Ranzi, G. and Vrcelj, Z. (2011a), "Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck", J. Constr. Steel Res., 67(10), 1658-1676. https://doi.org/10.1016/j.jcsr.2011.04.010
  6. Al-deen, S., Ranzi, G. and Vrcelj, Z. (2011b), "Full-scale long-term experiments of simply supported composite beams with solid slabs", J. Constr. Steel Res., 67(3), 308-321. https://doi.org/10.1016/j.jcsr.2010.11.001
  7. Al-deen, S., Ranzi, G. and Uy, B. (2015), "Non-uniform shrinkage in simply-supported composite steel-concrete slabs", Steel Compos. Struct., Int. J., 18(2), 375-394. https://doi.org/10.12989/scs.2015.18.2.375
  8. Al-Deen, S., Ranzi, G. and Vrcelj, Z. (2012), "Long-term experiments of composite beams and connections", Mag. Concrete Res., 64(9), 849-861. https://doi.org/10.1680/macr.10.00189
  9. Alsamsam, I. (1991), Serviceability Criteria for Composite Floor Systems, The University of Minnesota, MN, USA.
  10. AS2327.1 (2003), Composite structures - Part 1: Simply Supported Beams; Standards Australia, Sydney.
  11. Baroghel-Bouny, V., Mainguy, M., Lassabatere, T. and Coussy, O. (1999), "Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials", Cement Concrete Res., 29(8), 1225-1238. https://doi.org/10.1016/S0008-8846(99)00102-7
  12. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69(4), 212-217.
  13. Bazant, Z.P. (1985), Fourth RILEM International Symposium on Creep and Shrinkage of Concrete: Mathematical Modeling.
  14. Bazant, Z.P. and Najjar, L.J. (1971), "Drying of concrete as a nonlinear diffusion problem", Cement Concrete Res., 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
  15. Benboudjema, F., Meftah, F. and Torrenti, J.M. (2005), "Interaction between drying, shrinkage, creep and cracking phenomena in concrete", Eng. Struct., 27(2), 239-250. https://doi.org/10.1016/j.engstruct.2004.09.012
  16. Bradford, M.A. (2010), "Generic modelling of composite steelconcrete slabs subjected to shrinkage, creep and thermal strains including partial interaction", Eng. Struct., 32(5), 1459-1465. https://doi.org/10.1016/j.engstruct.2010.01.024
  17. Bradford, M.A. and Gilbert, R.I. (1991), "Time-dependent behaviour of simply-supported steel-concrete composite beams", Mag. Concrete Res., 43(157), 265-274. https://doi.org/10.1680/macr.1991.43.157.265
  18. Chen, S. and Shi, X. (2011), "Shear bond mechanism of composite slabs - A universal FE approach", J. Constr. Steel Res., 67(10), 1475-1484. https://doi.org/10.1016/j.jcsr.2011.03.021
  19. Chen, S., Shi, X. and Qiu, Z. (2011), "Shear bond failure in composite slabs - A detailed experimental study", Steel Compos. Struct., Int. J., 11(3), 233-250. https://doi.org/10.12989/scs.2011.11.3.233
  20. Crisinel, M. and Marimon, F. (2004), "A new simplified method for the design of composite slabs", J. Constr. Steel Res., 60(3-5), 481-491. https://doi.org/10.1016/S0143-974X(03)00125-1
  21. Daniels, B.J. and Crisinel, M. (1993), "Composite slab behavior and strength analysis. Part II: Comparisons with test results and parametric analysis", J. Struct. Eng., 119(1), 36-49. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(36)
  22. Dilger, W. and Neville, A.M. (1971), "Method of creep analysis of structural members", Special Publication, 27, 349-372.
  23. Easterling, W.S. and Young, C.S. (1992), "Strength of composite slabs", J. Struct. Eng., 118(9), 2370-2389. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2370)
  24. Eldib, M.A., Maaly, H.M., Beshay, A.W. and Tolba, M.T. (2009), "Modelling and analysis of two-way composite slabs", J. Constr. Steel Res., 65(5), 1236-1248. https://doi.org/10.1016/j.jcsr.2009.01.002
  25. Eurocode 4 (2004), EC4 Design of composite steel and concrete structures - Part 1.1: General rules and rules for buildings; British Standards Institution.
  26. Fan, J., Nie, J., Li, Q. and Wang, H. (2010), "Long-term behavior of composite beams under positive and negative bending. I: experimental study", J. Struct. Eng., 136(7), 849-857. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000175
  27. Gholamhoseini, A., Gilbert, R.I., Bradford, M.A. and Chang, Z.T. (2012), "Long-term deformation of composite slabs", Concrete in Australia, 38(4), 25-32.
  28. Gilbert, R.I. (2013), "Time-dependent stiffnes of cracked reinforced and composite concrete slabs", Proceedings of the 11th International Conference on Modern Building Materials, Structures and Techniques (MBMST), Vilnius, Lithuania, May.
  29. Gilbert, R.I. and Ranzi, G. (2011), Time-Dependent Behaviour of Concrete Structures, Spon Press, London, UK.
  30. Gilbert, R.I., Bradford, M.A., Gholamhoseini, A. and Chang, Z.T. (2012), "Effects of shrinkage on the long-term stresses and deformations of composite concrete slabs", Eng. Struct., 40, 9-19. https://doi.org/10.1016/j.engstruct.2012.02.016
  31. Jeong, Y.-J., Kim, H.-Y. and Kim, S.-H. (2005), "Partial-interaction analysis with push-out tests", J. Constr. Steel Res., 61(9), 1318-1331. https://doi.org/10.1016/j.jcsr.2005.01.010
  32. Johnson, R.P. (1987), "Shrinkage induced curvature in composite beams with a cracked concrete flange", Struct. Eng., 65B(4), 72-76.
  33. Kim, H.-Y. and Jeong, Y.-J. (2010), "Ultimate strength of a steel-concrete composite bridge deck slab with profiled sheeting", Eng. Struct., 32(2), 534-546. https://doi.org/10.1016/j.engstruct.2009.10.014
  34. Kwak, H.-G., Ha, S.-J. and Kim, J.-K. (2006), "Non-structural cracking in RC walls: Part I. Finite element formulation", Cement Concrete Res., 36(4), 749-760. https://doi.org/10.1016/j.cemconres.2005.12.001
  35. Lopes, E. and Simoes, R. (2008), "Experimental and analytical behaviour of composite slabs", Steel Compos. Struct., Int. J., 8(5), 361-388. https://doi.org/10.12989/scs.2008.8.5.361
  36. Marimuthu, V., Seetharaman, S., Arul Jayachandran, S., Chellappan, A., Bandyopadhyay, T.K. and Dutta, D. (2007), "Experimental studies on composite deck slabs to determine the shear-bond characteristic values of the embossed profiled sheet", J. Constr. Steel Res., 63(6), 791-803. https://doi.org/10.1016/j.jcsr.2006.07.009
  37. Moon, J.H. (2006), Shrinkage, Residual Stress and Cracking in Heterogeneous Material, Purdue University, West Lafayette, IN, USA.
  38. Patrick, M. and Bridge, R.Q. (1994), "Partial shear connection design of composite slabs", Eng. Struct., 16(5), 348-362. https://doi.org/10.1016/0141-0296(94)90028-0
  39. Porter, M.L. (1985), "Analysis of two-way acting composite", J. Struct. Eng., 111(1), 1-18. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(1)
  40. Porter, M.L. and Ekberg Jr., C.E. (1977), "Behavior of steel-deck-reinforced slabs", J. Struct. Div., 103(3), 663-677.
  41. Ranzi, G. and Vrcelj, Z. (2009), "Closed form solutions for the long-term analysis of composite steel-concrete members subjected to non-uniform shrinkage distributions", Proceedings of the 6th International Conference on Advances in Steel Structures, Hong Kong, December.
  42. Ranzi, G., Al-Deen, S., Ambrogi, L. and Uy, B. (2013a), "Long-term behaviour of simply-supported post-tensioned composite slabs", J. Constr. Steel Res., 88, 172-180. https://doi.org/10.1016/j.jcsr.2013.05.010
  43. Ranzi, G., Al-deen, S., Hollingum, G., Hone, T., Gowripalan, S. and Uy, B. (2013b), "An experimental study on the ultimate behaviour of simply-supported post-tensioned composite slabs." accepted for publication", J. Constr. Steel Res., 89, 293-306. https://doi.org/10.1016/j.jcsr.2013.07.013
  44. Ranzi, G., Leoni, G. and Zandonini, R. (2013c), "State of the art on the time-dependent behaviour of composite steel-concrete structures", J. Constr. Steel Res., 80, 252-263. https://doi.org/10.1016/j.jcsr.2012.08.005
  45. Roll, F. (1971), "Effects of differential shrinkage and creep on a composite steel-concrete structure", ACI Special Publication, SP-27(8), 187-214.
  46. Roy, W.C. (1937), "Drying shrinkage of large concrete members", J. Proceedings, 33(1), 327-336.
  47. Sakata, K. (1983), "A study on moisture diffusion in drying and drying shrinkage of concrete", Cement Concrete Res., 13(2), 216-224. https://doi.org/10.1016/0008-8846(83)90104-7
  48. Seres, N. and Dunai, L. (2011), "Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking", Steel Compos. Struct., Int. J., 11(1), 39-58.
  49. Shayan, S., Al-deen, S., Ranzi, G. and Vrcelj, Z. (2010), Long-Term Behaviour of Composite Steel Concrete Slabs: An Experimental Study, Sydney, Australia.
  50. Stark, J.W.B. and Brekelmans, J.W.P.M. (1990), "Plastic design of continuous composite slabs", J. Constr. Steel Res., 15(1-2), 23-47. https://doi.org/10.1016/0143-974X(90)90041-E
  51. Veljkovic, M. (1996), Behaviour and Resistance of Composite Slabs, Lulea University of Technology, Lulea, Sweden.
  52. Veljkovic, M. (1998), "Influence of load arrangement on composite slab behaviour and recommendations for design", J. Constr. Steel Res., 45(2), 149-178. https://doi.org/10.1016/S0143-974X(97)00055-2
  53. Weiss, W.J. and Shah, S.P. (2002), "Restrained shrinkage cracking: the role of shrinkage reducing admixtures and specimen geometry", Mater. Struct., 35(2), 85-91. https://doi.org/10.1617/13799
  54. Wright, H.D., Vitek, J.L. and Rakib, S.N. (1992), "Long-term creep and shrinkage in composite beams with partial connection", ICE Proceedings, Struct. Build., 94(2), 187-195. https://doi.org/10.1680/istbu.1992.18787