과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Gansu Province
참고문헌
- Babaei, M.H. and Chen, Z.T. (2009), "Dynamic response of a thermopiezoelectric rod due to a moving heat source", Smart Mater. Struct., 18, 1-9.
- Durbin, F. (1973), "Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate's method", Comput. J., 17, 371-376.
- El-Karamany, A.S. and Ezzat, M.A. (2005), "Propagation of discontinuities in thermopiezoelectric rod", J. Therm. Stresses, 28, 997-1030. https://doi.org/10.1080/01495730590964954
- Farzad, E. and Mohsen D. (2017), "Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., 20(3), 351-368. https://doi.org/10.12989/SSS.2017.20.3.351
- Green, A.E. and Lindsany, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
- He, T.H., Cao L. and Li, S.R. (2007), "Dynamic response of a piezoelectric rod with thermal relaxation", J. Sound Vib., 306, 897-907. https://doi.org/10.1016/j.jsv.2007.06.018
- He, T.H., Tian, X.G. and Shen, Y.P. (2002), "Two-dimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent", Int. J. Eng. Sci., 40(20), 2249-2264. https://doi.org/10.1016/S0020-7225(02)00137-4
- Honig G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transforms", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Othman, M.I.A. and Kumar, R. (2009), "Reflection of magnetothermoelastic waves under the effect of temperature-dependent properties in generalized thermoelasticity with four theories", Int. Commun. Heat Mass., 36, 513-520. https://doi.org/10.1016/j.icheatmasstransfer.2009.02.002
- Othman, M. I. A. and Song, Y. Q. (2008), "Reflection of magnetothermoelasticity waves with two relaxation times and temperature-dependent elastic moduli", Appl. Math. Model., 32, 483-500. https://doi.org/10.1016/j.apm.2007.01.001
- Othman, M.I.A. and Lotfy, K.H. (2009), "Two-dimensional problem of generalized magneto-thermoelasticity with temperature-dependent elastic moduli for different theories", Multidiscipl. Model. Mater. Struct., 5, 235-242. https://doi.org/10.1163/157361109789016961
- Povstenko, Y.Z. (2009), "Thermoelasticity that uses fractional heat conduction equation", J. Math. Sci., 162, 296-305. https://doi.org/10.1007/s10958-009-9636-3
- Povstenko, Y.Z. (2005), "Fractional heat conduction and associated thermal stress", J. Therm. Stresses, 28, 83-102.
- Povstenko,Y. Z. (2011), "Fractional Cattaneo-type equations and generalized thermo-elasticity", J. Therm. Stresses, 34, 97-114. https://doi.org/10.1080/01495739.2010.511931
- Rishin, V.V., Lyashenko, B.A., Akinin, K.G. and Nadezhdin, G.N. (1973), "Temperature dependence of adhesion strength and elasticity of some heat-resistant coatings", Strength Mater., 5, 123-126. https://doi.org/10.1007/BF00762888
- Sherief, H.H., El-Sayed, A.M.A. and El-Latief, A.M. (2010), "Fractional order theory of thermoelasticity", Int. J. Solids Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- Shweta, K. and Santwana, M. (2011), "A problem on elastic half space under fractional order theory of thermoelasticity", J. Therm. Stresses, 4(7), 724-739.
- Xiong, Q.L. and Tian, X.G. (2011), "Transient magnetothermoelastic response for a semi-infinite body with voids and variable material properties during thermal shock", Int. J. Appl .Mech., 3(4),881-902. https://doi.org/10.1142/S1758825111001287
- Xiong, Q.L. and Tian, X., (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. https://doi.org/10.12989/SCS.2017.25.2.187
- Youssef, H.M. (2010), "Theory of fractional order generalized thermoelasticity", J. Heat Trans., 132(6), 1-7.
- Youssef, H.M. (2012), "Two-dimensional thermal shock problem of fractional order generalized thermoelasticity", Acta Mech., 223(6), 1219-1231. https://doi.org/10.1007/s00707-012-0627-y
- Youssef, H.M. and Al-Lehaibi, E.A. (2010a), "Variational principle of fractional order generalized thermoelasticity", Appl. Math. Lett., 23(10), 1183-1187. https://doi.org/10.1016/j.aml.2010.05.008
- Youssef, H.M. and Al-Lehaibi, E.A. (2010b), "Fractional order generalized thermoelastic half-space subjected to ramp-type heating", Mech. Res. Commun., 37(5), 448-452. https://doi.org/10.1016/j.mechrescom.2010.06.003