Acknowledgement
Supported by : Natural Science Foundation of China
References
- Abramov, O.V. (1998), High-Intensity Ultrasonics: Theory and Industrial Applications, Gorden and Breach Science Publishers, Amsterdam, The Netherlands.
- Arnold, F.J. and Muhlen, S.S. (2003), "The influence of the thickness of non-piezoelectric pieces on pre-stressed piezotransducers", Ultrasonics, 41, 191-196. https://doi.org/10.1016/S0041-624X(03)00096-9
- Athikom, B., Hari, K. and P.and Robert, D.F. (1991), "Optimizing the performance of piezoelectric drivers that use stepped horns", J. Acoust. Soc. Am., 90, 1223-1229. https://doi.org/10.1121/1.401914
- Arnold, F.J. and Muhlen, S.S. (2001), "The mechanical pre-stressing in ultrasonic piezotransducers", Ultrasonics, 39, 7-11. https://doi.org/10.1016/S0041-624X(00)00048-2
- Arnold, F.J. and Muhlen, S.S. (2001), "The resonance frequencies on mechanically pre-stressed ultrasonic Piezotransducers", Ultrasonics, 39, 1-5. https://doi.org/10.1016/S0041-624X(00)00047-0
- Dahlem, O., Reisse, J. and Halloin, V. (1999), "The radially vibrating horn: A scaling-up possibility for sonochemical reactions", Chem. Eng. Sci., 54, 2829-2838. https://doi.org/10.1016/S0009-2509(98)00356-X
- Dubus, B. and Debus, J.C. (1991), "Analysis of mechanical limitations of high power piezoelectric transducers using finite element modeling", Ultrasonics, 29, 201-207. https://doi.org/10.1016/0041-624X(91)90057-F
- Decastro, A.E. and Johnson, B.R. (2006), High power ultrasonic transducer with broadband frequency characteristics at all overtones and harmonics, United States. US Patent, 7019439, B2.
- Fu, Z.Q., Xian, X.J. and Lin, S.Y. (2012), "Investigations of the barbell ultrasonic transducer operated in the full-wave vibrational mode", Ultrasonics, 52, 578-586. https://doi.org/10.1016/j.ultras.2011.12.006
- Gachagan, A., McNab, A., Blindt, R., Patrick, M. and Marriott, C. (2004), "A high power ultrasonic array based test cell", Ultrasonics, 42, 57-68. https://doi.org/10.1016/j.ultras.2004.01.055
- Hansen, H.H. (1997), "Optimal design of an ultrasonic transducer", Struct. Optim., 14, 150-157. https://doi.org/10.1007/BF01812517
- Heikkola, E., Miettinen, K. and Nieminen, P. (2006), "Multiobjective optimization of an ultrasonic transducer using NIMBUS", Ultrasonics, 44, 368-380. https://doi.org/10.1016/j.ultras.2006.04.004
- Heikkola, E. and Laitinen, M. (2005), "Model-based optimization of ultrasonic transducers", Ultrasonics Sonochemistry, 12, 53-57. https://doi.org/10.1016/j.ultsonch.2004.05.009
- Hu, J., Lin, S.Y. and Zhang, X.L. (2014), "Radially Sandwiched composite transducers composed of the radially polarized piezoelectric ceramic circular ring and metal rings", Acta Acustica United with Acustica, 100, 418-426. https://doi.org/10.3813/AAA.918721
- Iula, A., Vazquez, F., Pappalardo, M. and Gallego, J.A. (2002), "Finite element three-dimensional analysis of the vibrational behavior of the Langevin-type transducer", Ultrasonics, 40, 513-517. https://doi.org/10.1016/S0041-624X(02)00174-9
- Lin, S.Y. (2004), "Optimization of the performance of the sandwich piezoelectric ultrasonic transducer", J. Acoust. Soc. Am., 115, 182-186. https://doi.org/10.1121/1.1635836
- Lin, S.Y. (2005), "Analysis of the sandwich piezoelectric ultrasonic transducer in coupled vibration", J. Acoust. Soc. Am., 117, 653-661. https://doi.org/10.1121/1.1849960
- Lin, S.Y., Fu, Z.Q. and Zhang, X.L. (2013), "Radial vibration and ultrasonic field of along tubular ultrasonic radiator", Ultrasonics Sonochemistry, 20, 1161-1167. https://doi.org/10.1016/j.ultsonch.2013.01.013
- Lin, S.Y., Fu, Z.Q., Wang, Y. and Hu, J. (2013), "Radially sandwiched cylindrical piezoelectric transducer", Smart Mater. Struct., 22, 015005 (10pp). https://doi.org/10.1088/0964-1726/22/1/015005
- Lin, S.Y., Xu, L. and Hu, W.X. (2011), "A new type of high power composite ultrasonic transducer", J. Sound Vib., 330, 1419-1431. https://doi.org/10.1016/j.jsv.2010.10.009
- Lin, S.Y. (2005), "Load characteristics of high power sandwich piezoelectric ultrasonic transducers", Ultrasonics, 43, 365-373. https://doi.org/10.1016/j.ultras.2004.07.008
- Lin,S.Y.(2009), "Analysis of multifrequency Langevin composite ultrasonic transducers", IEEE T. UFFC, 56, 1990-1998. https://doi.org/10.1109/TUFFC.2009.1275
- Lin, S.Y. and Xu, C.L. (2008), "Analysis of the sandwich ultrasonic transducer with two sets of piezoelectric elements", Smart Mater. Struct., 17, 065008 (8pp). https://doi.org/10.1088/0964-1726/17/6/065008
- Michael, P.J. (1988), "Velocity control and the mechanical impedance of single degree of freedom electromechanical vibrators", J. Acoust. Soc. Am., 84, 1994-2001. https://doi.org/10.1121/1.397043
- Minchenko, H. (1969), "High-power piezoelectric transducer design", IEEE T. Sonics Ultrasonics, 16, 126-136. https://doi.org/10.1109/T-SU.1969.29514
- Neppiras, E.A.(1973), "The pre-stressed piezoelectric sandwich transducer", Proceedings of the Ultrasonics International Confenence .
- Parrini, L. (2003), "New technology for the design of advanced ultrasonic transducers for high-power applications", Ultrasonics, 41, 261-269. https://doi.org/10.1016/S0041-624X(02)00450-X
- Peshkovsky, S.L. and Peshkovsky, A.S. (2007), "Matching a transducer to water at cavitation: Acoustic horn design principles", Ultrasonics Sonochemistry, 14, 314-322. https://doi.org/10.1016/j.ultsonch.2006.07.003
- Ranz-Guerra, C. and Ruiz-Aguirre, R.D. (1975), "Composite sandwich transducers with quarter-wavelength radiating layers", J. Acoust. Soc. Am., 58, 494-498. https://doi.org/10.1121/1.380694
- Shoh, A. (1970), Sonic transducer, US Patent. No. 3524085.
- Wevers, M., Lafaut, J.P., Baert, L. and Chilibon, I. (2005), "Low-frequency ultrasonic piezoceramic sandwich transducer", Sensor. Actuat. - A, 122, 284-289. https://doi.org/10.1016/j.sna.2005.05.009
- Walter, et al. (1993), Ultrasonic Transducer, United States Patent. 5200666.
- Zhang, X.L., Lin, S.Y., Fu, Z.Q. and Wang, Y. (2013), "Coupled vibration analysis for a composite cylindrical piezoelectric ultrasonic transducer", Acta Acustica United with Acustica, 99, 201-207. https://doi.org/10.3813/AAA.918603
Cited by
- Modeling and electromechanical performance analysis of frequency-variable piezoelectric stack transducers vol.31, pp.6, 2018, https://doi.org/10.1177/1045389x20905982