DOI QR코드

DOI QR Code

Material model for load rate sensitivity

  • Kozar, Ivica (University of Rijeka Faculty of Civil Engineering) ;
  • Ibrahimbegovic, Adnan (Sorbonne Universites / Universite de Technologie Compiegne, Laboratoire Roberval de Mecanique Centre de Recherche Royallieu) ;
  • Rukavina, Tea (University of Rijeka Faculty of Civil Engineering)
  • 투고 : 2017.06.07
  • 심사 : 2017.06.23
  • 발행 : 2018.04.25

초록

This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

키워드

과제정보

연구 과제 주관 기관 : The Croatian Science Foundation

참고문헌

  1. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015a), "Combined hardening and localized failure with softening plasticity in dynamics", Coupled Syst. Mech., 4(2), 115-136. https://doi.org/10.12989/csm.2015.4.2.115
  2. Do, X.N., Ibrahimbegovic, A. and Brancherie, D. (2015b), "Localized failure in damage dynamics", Coupled Syst. Mech., 4(3), 211-235. https://doi.org/10.12989/csm.2015.4.3.211
  3. Ermentrout, B. (2002), Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM.
  4. Holger, K. and Thomas, S. (2003), Nonlinear Time Series Analysis, Cambridge University Press.
  5. http://reference.wolfram.com/language (2017), Numerical Solution of Differential-Algebraic Equations, Wolfram.
  6. http://www.math.pitt.edu/-bard/xpp/xpp.html (2016), XPPOUT 8.0, University of Pittsburgh.
  7. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Springer
  8. Kantz, H. and Schreiber, T. (2003), Nonlinear Time Series Analysis, Cambridge University Press.
  9. Keivani, A., Shooshtari, A. and Sani, A.A. (2014), "Forced vibration analysis of a dam-reservoir interaction problem in frequency domain", Coupled Syst. Mech., 3(4), 385-403. https://doi.org/10.12989/csm.2014.3.4.385
  10. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Sign. Proc., 20, 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008
  11. Kozar, I. and Ozbolt, J. (2010), "Some aspects of load-rate sensitivity in visco-elastic microplane material model", Comput. Concrete, 7, 331-346. https://doi.org/10.12989/cac.2010.7.4.331
  12. Kozar, I., Ozbolt, J. and Pecak, T. (2012), "Load-rate sensitivity in 1D non-linear viscoelastic model", Key Eng. Mater., 488-489, 731-734.
  13. Kun, F., Raischel, F., Hidalgo, R.C. and Herrmann, H.J. (2007), "Extensions of fiber bundle models", Lect. Note. Phys., 705, 57-92.
  14. Liu, B. and Tang, S. (2016), "Heat jet approach for finite temperature atomic simulations of twodimensional square lattice", Coupled Syst. Mech., 5(4), 371-393. https://doi.org/10.12989/csm.2016.5.4.371
  15. Marenic, E. and Ibrahimbegovic, A. (2015), "Homogenized elastic properties of graphene for moderate deformations", Coupled Syst. Mech., 4(2), 137-155. https://doi.org/10.12989/csm.2015.4.2.137
  16. Simo, J.C. and Hughes, T.J.R. (1998), Computational Inelasticity, Springer.
  17. Toh, W., Ding, Z., Ng, T.Y. and Liu, Z. (2016), "Light intensity controlled wrinkling patterns in photothermal sensitive hydrogels", Coupled Syst. Mech., 5(4), 315-327. https://doi.org/10.12989/csm.2016.5.4.315
  18. Van, M. and Jan, G.M. (2013), Concrete Fracture a Multiscale Approach, CRC Press Taylor & Francis.
  19. Ziaolhagh, S.H., Goudarzi, M. and Sani, A.A. (2016), "Free vibration analysis of gravity dam-reservoir system utilizing 21 node-33 Gauss point triangular elements", Coupled Syst. Mech., 5(1), 59-86. https://doi.org/10.12989/csm.2016.5.1.059

피인용 문헌

  1. Daily influent variation for dynamic modeling of wastewater treatment plants vol.9, pp.2, 2018, https://doi.org/10.12989/csm.2020.9.2.111