DOI QR코드

DOI QR Code

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • Received : 2017.06.06
  • Accepted : 2017.07.09
  • Published : 2018.04.25

Abstract

A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

Keywords

References

  1. Armero F. and Ehrlich D. (2006), "Numerical modeling of softening hinges in thin Euler-Bernoulli beams", Comput. Struct., 84, 641-656. https://doi.org/10.1016/j.compstruc.2005.11.010
  2. Brank, B., Briseghella, L., Tonello, N. and Damjanic, F. (1998), "On non-linear dynamics of shells: Implementation of energy-momentum conserving algorithm for a finite rotation shell model", J. Numer. Meth. Eng., 42, 409-442. https://doi.org/10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B
  3. Bui, N.N., Ngo, M., Nikolic, M., Brancherie, D. and Ibrahimbegovic, A. (2014), "Enriched Timoshenko beam finite element for modeling bending and shear failure of reinforced concrete frames", Comput. Struct., 143, 9-18. https://doi.org/10.1016/j.compstruc.2014.06.004
  4. Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mesh. Energy, 199, 1371-1385. https://doi.org/10.1016/j.cma.2009.09.003
  5. Hartmann, D., Breidt, M., Nguyen, V.V., Stangenberg, F., Hohler, S., Schweizerhof, K., Mattern, S., Blankenhorn, G., Moller, B. and Liebscher, M. (2008), On a Fundamental Concept of Structural Collapse Simulation Taking into Account Uncertainty Phenomena, In: A. Ibrahimbegovic, M. Zlatar (eds.) Damage Assessment and Reconstruction after War or Natural Disasters, Springer, The Netherlands, NATO Science for Peace and Security Series C, Environmental Security (2009).
  6. Humberto Breves, C. and Rodrigo Ribeiro, P. (2014), "A total lagrangian position-based FEM applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse", Fin. Elem. Analy. Des., 91, 1-15. https://doi.org/10.1016/j.finel.2014.07.001
  7. Ibrahimbegovic, A. (2009), Non-Linear Solid Mechanics, Springer.
  8. Ibrahimbegovic, A. and Frey, F. (1993a), "Finite element analysis of linear and nonlinear planar deformation of elastic initially curved beams", J. Numer. Meth. Eng., 36, 3239-3258. https://doi.org/10.1002/nme.1620361903
  9. Ibrahimbegovic, A. and Frey, F. (1993b), "Stress resultant finite element analysis of reinforced concrete plates", J. Eng. Comput., 10, 15-30. https://doi.org/10.1108/eb023892
  10. Ibrahimbegovic, A. and Mamouri, S. (1999), "Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems", Comput. Struct., 70, 1-22. https://doi.org/10.1016/S0045-7949(98)00150-3
  11. Ibrahimbegovic, A. and Mamouri, S. (2000), "On rigid components joint constraints in nonlinear dynamics of multibody systems employing 3D geometrically exact beam model", Comput. Meth. Appl. Mesh. Energy, 188, 805-831. https://doi.org/10.1016/S0045-7825(99)00363-1
  12. Ibrahimbegovic, A. and Mamouri, S. (2002), "Energy conserving decaying implicit time stepping scheme for nonlinear dynamics of three dimensional beams undergoing finite rotations", Comput. Meth. Appl. Mesh. Energy, 191, 4241-4258. https://doi.org/10.1016/S0045-7825(02)00377-8
  13. Imamovic, I., Ibrahimbegovic, A. and Mesic, E. (2017), "Nonlinear kinematics Reissner's beam with combined hardening/softening elastoplasticity", Comput. Struct., 189, 12-20. https://doi.org/10.1016/j.compstruc.2017.04.011
  14. Imamovic, I., Ibrahimbegovic, A., Knopf-Lenoir, C. and Mesic, E. (2015), "Plasticity-damage model parameters identification for structural connections", Coupled Syst. Mech., 4, 337-364. https://doi.org/10.12989/csm.2015.4.4.337
  15. Juarez, G. and Ayala, A.G. (2012), "Finite element variational formulation for beams with discontinuities", Fin. Elem. Analy. Des., 54, 37-47. https://doi.org/10.1016/j.finel.2012.01.004
  16. Jukic, M., Brank, B. and Ibrahimbegovic, A. (2013), "Embedded discontinuity finite element formulation for failure analysis of planar reinforced concrete beams and frames", Eng. Struct., 50, 115-125. https://doi.org/10.1016/j.engstruct.2012.07.028
  17. Jukic, M., Brank, B. and Ibrahimbegovic, A. (2014), "Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity", Eng. Struct., 75, 507-527. https://doi.org/10.1016/j.engstruct.2014.06.017
  18. Mamouri, S., Hammadi, F. and Ibrahimbegovic, A. (2014), "Decaying\conserving implicit scheme and nonlinear instability analysis of 2D frame structures", J. Non-lin. Mech., 67, 144-152. https://doi.org/10.1016/j.ijnonlinmec.2014.08.011
  19. Mamouri, S., Kouli, R., Benzegaou, A. and Ibrahimbegovic, A. (2016a), "Implicit controllable highfrequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam", Nonlin. Dyn., 84(3), 1289-1302. https://doi.org/10.1007/s11071-015-2567-2
  20. Mamouri, S., Mourid, E. and Ibrahimbegovic, A. (2016b), "Study of geometric non-linear instability of 2D frame structures", Eur. J. Comput. Mech., 24(6), 256-278.
  21. Michaloudis, G., Blankenhorn, G., Mattern, S. and Schweizerhof, K. (2010), Modelling Structural Failure with Finite Element Analysis of Controlled Demolition of Buildings by Explosives Using LS-DYNA, In: Nagel, W., Kroner, D. and Resch, M. (eds), High Performance Computing in Science and Engineering '09. Springer, Berlin, Heidelberg.
  22. Michaloudis, G., Mattern, S. and Schweizerhof, K. (2011), Computer Simulation for Building Implosion Using LS-DYNA, In: Nagel, W., Kroner, D. and Resch, M. (eds), High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg.
  23. Nanakorn, P. (2004), "A two-dimensional beam-column finite element with embedded rotational discontinuities", Comput. Struct., 82, 753-762. https://doi.org/10.1016/j.compstruc.2004.02.008
  24. Ngo, V.M., Ibrahimbegovic, A. and Brancherie, D. (2014), "Stress-resultant model and finite element analysis of reinforced concrete frames under combined mechanical and thermal loads", Coupled Syst. Mech., 3, 111-144. https://doi.org/10.12989/csm.2014.3.1.111
  25. Pham, B.H., Brancherie, D., Davenne, L. and Ibrahimbegovic, A. (2013), "Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates", Comput. Mech., 51, 347-360. https://doi.org/10.1007/s00466-012-0734-6
  26. Piculin, S. and Brank, B. (2015), "Weak coupling of shell and beam computatinal models for failure analysis of steel frames", Fin. Elem. Analy. Des., 97, 20-42. https://doi.org/10.1016/j.finel.2015.01.001
  27. Rodolfo Andre, K. and Humberto Breves, C. (2017), "Flexible multibody dynamics finite element formulation applied to structural progressive collapse analysis", Lat. Am. J. Sol. Struct., 14, 52-71. https://doi.org/10.1590/1679-78253112
  28. Wu, J.Y. (2013), "New enriched finite elements with softening plastic hinges for the modeling of localized failure in beams", Comput. Struct., 128, 203-218. https://doi.org/10.1016/j.compstruc.2013.06.011
  29. Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method, Vol. I, II, III.