DOI QR코드

DOI QR Code

Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite

  • Al-Fasih, M.Y. (Construction Research Centre, Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Kueh, A.B.H. (Construction Research Centre, Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Abo Sabah, S.H. (Construction Research Centre, Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Yahya, M.Y. (Centre for Composites, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia)
  • Received : 2016.07.14
  • Accepted : 2018.01.11
  • Published : 2018.01.25

Abstract

Mode II fracture toughness, $K_{IIC}$, of single-ply triaxially woven fabric (TWF) composite due to tow waviness and anisotropy effects were numerically and experimentally studied. The numerical wavy beam network model with anisotropic material description denoted as TWF anisotropic was first validated with experimental Mode II fracture toughness test employing the modified compact tensile shear specimen configuration. 2D planar Kagome and TWF isotropic models were additionally constructed for various relative densities, crack lengths, and cell size parameters for examining effects due to tow waviness and anisotropy. $K_{IIC}$ generally increased with relative density, the inverse of cell size, and crack length. It was found that both the waviness and anisotropy of tow inflict a drop in $K_{IIC}$ of TWF. These effects were more adverse due to the waviness of tow compared to anisotropy.

Keywords

Acknowledgement

Supported by : Universiti Teknologi Malaysia

References

  1. ABAQUS Version 6.13 (2013), Analysis User's Guide, Dassault Systems.
  2. Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective Mode I fracture toughness of triaxially woven fabric composites", Eng. Fract. Mech., 182, 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051
  3. Alonso, I.Q. and Fleck, N. (2009), "The damage tolerance of a sandwich panel containing a cracked honeycomb core", J. Appl. Mech., 76(6), 061003-1-8. https://doi.org/10.1115/1.2912995
  4. Aoki, T., Yoshida, K. and Watanabe, A. (2007), "Feasibility study of triaxially-woven fabric composite for deployable structures", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, April.
  5. ASTM D638 (2010), Standard test method for tensile properties of plastics; ASTM International, West Conshohocken, PA, USA.
  6. ASTM D3039 (2000), Standard test method for tensile properties of polymer matrix composite materials; ASTM International, West Conshohocken, PA, USA.
  7. Bai, J., Xiong, J., Liu, M. and Man, Z. (2016), "Analytical solutions for predicting tensile and shear moduli of triaxial weave fabric composites", Acta Mech. Solida Sin., 29(1), 59-77. https://doi.org/10.1016/S0894-9166(16)60007-1
  8. Baier, H. and Datashvili, L. (2011), "Active and morphing aerospace structures-A synthesis between advanced materials, structures and mechanisms", Int. J. Aeronaut. Space Sci., 12(3), 225-240. https://doi.org/10.5139/IJASS.2011.12.3.225
  9. Choi, S. and Sankar, B.V. (2005), "A micromechanical method to predict the fracture toughness of cellular materials", Int. J. Solids Struct., 42(5), 1797-1817. https://doi.org/10.1016/j.ijsolstr.2004.08.021
  10. Choupani, N. (2008), "Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens", Mat. Sci. Eng. A-Struct., 478(1), 229-242. https://doi.org/10.1016/j.msea.2007.05.103
  11. Christodoulou, I. and Tan, P. (2013), "Crack initiation and fracture toughness of random Voronoi honeycombs", Eng. Fract. Mech., 104, 140-161. https://doi.org/10.1016/j.engfracmech.2013.03.017
  12. Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Steel Compos. Struct., Int. J., 20(4), 913-930. https://doi.org/10.12989/scs.2016.20.4.913
  13. Fleck, N.A. and Qiu, X. (2007), "The damage tolerance of elastic-brittle, two-dimensional isotropic lattices", J. Mech. Phys. Solids, 55(3), 562-588. https://doi.org/10.1016/j.jmps.2006.08.004
  14. Fujita, A., Hamada, H. and Maekawa, Z. (1993), "Tensile properties of carbon fiber triaxial woven fabric composites", J. Compos. Mater., 27(15), 1428-1442. https://doi.org/10.1177/002199839302701501
  15. Hoa, S., Sheng, S. and Ouellette, P. (2003), "Determination of elastic properties of triax composite materials", Compos. Sci. Technol., 63(3), 437-443. https://doi.org/10.1016/S0266-3538(02)00216-6
  16. Huang, J. and Gibson, L. (1991a), "Fracture toughness of brittle foams", Acta Metall. Mater., 39(7), 1627-1636. https://doi.org/10.1016/0956-7151(91)90250-5
  17. Huang, J. and Gibson, L. (1991b), "Fracture toughness of brittle honeycombs", Acta Metall. Mater., 39(7), 1617-1626. https://doi.org/10.1016/0956-7151(91)90249-Z
  18. Isaac, M.D. and Ishai, O. (1994), Engineering Mechanics of Composite Materials, Oxford.
  19. Jamali, J. (2014), "Mechanistic failure criterion for unidirectional and random fibre polymer composites", Ph.D. Thesis; The University of Western Ontario, London, ON, Canada.
  20. Kosugi, Y., Aoki, T. and Watanabe, A. (2011), "Fatigue characteristic and damage accumulation mechanism of triaxially-woven fabric composite", Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, April.
  21. Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001
  22. Kueh, A.B.H. (2013), "Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets", Int. J. Mech. Sci., 66, 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007
  23. Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Pt. A-Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005
  24. Kueh, A.B.H. and Pellegrino, S. (2007), "ABD matrix of singleply triaxial weave fabric composites", Proceedings of the 48th AIAA Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA. April.
  25. Lee, S.-J., Wang, J. and Sankar, B.V. (2007), "A micromechanical model for predicting the fracture toughness of functionally graded foams", Int. J. Solids Struct., 44(11), 4053-4067. https://doi.org/10.1016/j.ijsolstr.2006.11.007
  26. Lipperman, F., Ryvkin, M. and Fuchs, M.B. (2007), "Fracture toughness of two-dimensional cellular material with periodic microstructure", Int. J. Fract., 146(4), 279-290. https://doi.org/10.1007/s10704-007-9171-5
  27. Mallikarachchi, H. and Pellegrino, S. (2013), "Failure criterion for two-ply plain-weave CFRP laminates", J. Compos. Mater., 47(11), 1357-1375. https://doi.org/10.1177/0021998312447208
  28. Mishra, R. (2013), "Meso-scale finite element modeling of triaxial woven fabrics for composite in-plane reinforcement properties", Text. Res. J., 83(17), 1836-1845. https://doi.org/10.1177/0040517512474369
  29. Richard, H. (1984), "Some theoretical and experimental aspects of mixed mode fractures", In: (S.R. Valluri Editor), Advances in Fracture Research, Oxford: Pergamon Press, pp. 3337-3344.
  30. Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., Int. J., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263
  31. Romijn, N.E. and Fleck, N.A. (2007), "The fracture toughness of planar lattices: Imperfection sensitivity", J. Mech. Phys. Solids, 55(12), 2538-2564. https://doi.org/10.1016/j.jmps.2007.04.010
  32. Schmidt, I. and Fleck, N. (2001), "Ductile fracture of twodimensional cellular structures-Dedicated to Prof. Dr.-Ing. D. Gross on the occasion of his 60th birthday", Int. J. Fract., 111(4), 327-342. https://doi.org/10.1023/A:1012248030212
  33. Thiyagasundaram, P., Wang, J., Sankar, B.V. and Arakere, N.K. (2011), "Fracture toughness of foams with tetrakaidecahedral unit cells using finite element based micromechanics", Eng. Fract. Mech., 78(6), 1277-1288. https://doi.org/10.1016/j.engfracmech.2011.01.003
  34. Toribio, J. and Ayaso, F.J. (2003), "A fracture criterion for highstrength steel structural members containing notch-shape defects", Steel Compos. Struct., Int. J., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231
  35. Xu, D., Ganesan, R. and Hoa, S.V. (2007), "Buckling analysis of tri-axial woven fabric composite structures subjected to bi-axial loading", Compos. Struct., 78(1), 140-152. https://doi.org/10.1016/j.compstruct.2005.08.021
  36. Zhao, Q. and Hoa, S. (2003), "Thermal deformation behavior of triaxial woven fabric (TWF) composites with open holes", J. Compos. Mater., 37(18), 1629-1649. https://doi.org/10.1177/0021998303035192
  37. Zhao, Q. and Hoa, S. (2005), "Finite element modeling of a membrane sector of a satellite reflector made of triaxial composites", J. Compos. Mater., 39(7), 581-600. https://doi.org/10.1177/0021998305050738

Cited by

  1. Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.299
  2. Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.671