Acknowledgement
Supported by : Universiti Teknologi Malaysia
References
- ABAQUS Version 6.13 (2013), Analysis User's Guide, Dassault Systems.
- Al-Fasih, M.Y., Kueh, A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective Mode I fracture toughness of triaxially woven fabric composites", Eng. Fract. Mech., 182, 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051
- Alonso, I.Q. and Fleck, N. (2009), "The damage tolerance of a sandwich panel containing a cracked honeycomb core", J. Appl. Mech., 76(6), 061003-1-8. https://doi.org/10.1115/1.2912995
- Aoki, T., Yoshida, K. and Watanabe, A. (2007), "Feasibility study of triaxially-woven fabric composite for deployable structures", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, April.
- ASTM D638 (2010), Standard test method for tensile properties of plastics; ASTM International, West Conshohocken, PA, USA.
- ASTM D3039 (2000), Standard test method for tensile properties of polymer matrix composite materials; ASTM International, West Conshohocken, PA, USA.
- Bai, J., Xiong, J., Liu, M. and Man, Z. (2016), "Analytical solutions for predicting tensile and shear moduli of triaxial weave fabric composites", Acta Mech. Solida Sin., 29(1), 59-77. https://doi.org/10.1016/S0894-9166(16)60007-1
- Baier, H. and Datashvili, L. (2011), "Active and morphing aerospace structures-A synthesis between advanced materials, structures and mechanisms", Int. J. Aeronaut. Space Sci., 12(3), 225-240. https://doi.org/10.5139/IJASS.2011.12.3.225
- Choi, S. and Sankar, B.V. (2005), "A micromechanical method to predict the fracture toughness of cellular materials", Int. J. Solids Struct., 42(5), 1797-1817. https://doi.org/10.1016/j.ijsolstr.2004.08.021
- Choupani, N. (2008), "Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens", Mat. Sci. Eng. A-Struct., 478(1), 229-242. https://doi.org/10.1016/j.msea.2007.05.103
- Christodoulou, I. and Tan, P. (2013), "Crack initiation and fracture toughness of random Voronoi honeycombs", Eng. Fract. Mech., 104, 140-161. https://doi.org/10.1016/j.engfracmech.2013.03.017
- Erfani, S. and Akrami, V. (2016), "Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model", Steel Compos. Struct., Int. J., 20(4), 913-930. https://doi.org/10.12989/scs.2016.20.4.913
- Fleck, N.A. and Qiu, X. (2007), "The damage tolerance of elastic-brittle, two-dimensional isotropic lattices", J. Mech. Phys. Solids, 55(3), 562-588. https://doi.org/10.1016/j.jmps.2006.08.004
- Fujita, A., Hamada, H. and Maekawa, Z. (1993), "Tensile properties of carbon fiber triaxial woven fabric composites", J. Compos. Mater., 27(15), 1428-1442. https://doi.org/10.1177/002199839302701501
- Hoa, S., Sheng, S. and Ouellette, P. (2003), "Determination of elastic properties of triax composite materials", Compos. Sci. Technol., 63(3), 437-443. https://doi.org/10.1016/S0266-3538(02)00216-6
- Huang, J. and Gibson, L. (1991a), "Fracture toughness of brittle foams", Acta Metall. Mater., 39(7), 1627-1636. https://doi.org/10.1016/0956-7151(91)90250-5
- Huang, J. and Gibson, L. (1991b), "Fracture toughness of brittle honeycombs", Acta Metall. Mater., 39(7), 1617-1626. https://doi.org/10.1016/0956-7151(91)90249-Z
- Isaac, M.D. and Ishai, O. (1994), Engineering Mechanics of Composite Materials, Oxford.
- Jamali, J. (2014), "Mechanistic failure criterion for unidirectional and random fibre polymer composites", Ph.D. Thesis; The University of Western Ontario, London, ON, Canada.
- Kosugi, Y., Aoki, T. and Watanabe, A. (2011), "Fatigue characteristic and damage accumulation mechanism of triaxially-woven fabric composite", Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, April.
- Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001
- Kueh, A.B.H. (2013), "Buckling of sandwich columns reinforced by triaxial weave fabric composite skin-sheets", Int. J. Mech. Sci., 66, 45-54. https://doi.org/10.1016/j.ijmecsci.2012.10.007
- Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Pt. A-Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005
- Kueh, A.B.H. and Pellegrino, S. (2007), "ABD matrix of singleply triaxial weave fabric composites", Proceedings of the 48th AIAA Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA. April.
- Lee, S.-J., Wang, J. and Sankar, B.V. (2007), "A micromechanical model for predicting the fracture toughness of functionally graded foams", Int. J. Solids Struct., 44(11), 4053-4067. https://doi.org/10.1016/j.ijsolstr.2006.11.007
- Lipperman, F., Ryvkin, M. and Fuchs, M.B. (2007), "Fracture toughness of two-dimensional cellular material with periodic microstructure", Int. J. Fract., 146(4), 279-290. https://doi.org/10.1007/s10704-007-9171-5
- Mallikarachchi, H. and Pellegrino, S. (2013), "Failure criterion for two-ply plain-weave CFRP laminates", J. Compos. Mater., 47(11), 1357-1375. https://doi.org/10.1177/0021998312447208
- Mishra, R. (2013), "Meso-scale finite element modeling of triaxial woven fabrics for composite in-plane reinforcement properties", Text. Res. J., 83(17), 1836-1845. https://doi.org/10.1177/0040517512474369
- Richard, H. (1984), "Some theoretical and experimental aspects of mixed mode fractures", In: (S.R. Valluri Editor), Advances in Fracture Research, Oxford: Pergamon Press, pp. 3337-3344.
- Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., Int. J., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263
- Romijn, N.E. and Fleck, N.A. (2007), "The fracture toughness of planar lattices: Imperfection sensitivity", J. Mech. Phys. Solids, 55(12), 2538-2564. https://doi.org/10.1016/j.jmps.2007.04.010
- Schmidt, I. and Fleck, N. (2001), "Ductile fracture of twodimensional cellular structures-Dedicated to Prof. Dr.-Ing. D. Gross on the occasion of his 60th birthday", Int. J. Fract., 111(4), 327-342. https://doi.org/10.1023/A:1012248030212
- Thiyagasundaram, P., Wang, J., Sankar, B.V. and Arakere, N.K. (2011), "Fracture toughness of foams with tetrakaidecahedral unit cells using finite element based micromechanics", Eng. Fract. Mech., 78(6), 1277-1288. https://doi.org/10.1016/j.engfracmech.2011.01.003
- Toribio, J. and Ayaso, F.J. (2003), "A fracture criterion for highstrength steel structural members containing notch-shape defects", Steel Compos. Struct., Int. J., 3(4), 231-242. https://doi.org/10.12989/scs.2003.3.4.231
- Xu, D., Ganesan, R. and Hoa, S.V. (2007), "Buckling analysis of tri-axial woven fabric composite structures subjected to bi-axial loading", Compos. Struct., 78(1), 140-152. https://doi.org/10.1016/j.compstruct.2005.08.021
- Zhao, Q. and Hoa, S. (2003), "Thermal deformation behavior of triaxial woven fabric (TWF) composites with open holes", J. Compos. Mater., 37(18), 1629-1649. https://doi.org/10.1177/0021998303035192
- Zhao, Q. and Hoa, S. (2005), "Finite element modeling of a membrane sector of a satellite reflector made of triaxial composites", J. Compos. Mater., 39(7), 581-600. https://doi.org/10.1177/0021998305050738
Cited by
- Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.299
- Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.671