DOI QR코드

DOI QR Code

Truncated hierarchical B-splines in isogeometric analysis of thin shell structures

  • Atri, H.R. (Department of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Shojaee, S. (Department of Civil Engineering, Shahid Bahonar University of Kerman)
  • 투고 : 2017.05.17
  • 심사 : 2017.11.30
  • 발행 : 2018.01.25

초록

This paper presents an isogeometric discretization of Kirchhoff-Love thin shells using truncated hierarchical B-splines (THB-splines). It is demonstrated that the underlying basis functions are ideally appropriate for adaptive refinement of the so-called thin shell structures in the framework of isogeometric analysis. The proposed approach provides sufficient flexibility for refining basis functions independent of their order. The main advantage of local THB-spline evaluation is that it provides higher degree analysis on tight meshes of arbitrary geometry which makes it well suited for discretizing the Kirchhoff-Love shell formulation. Numerical results show the versatility and high accuracy of the present method. This study is a part of the efforts by the authors to bridge the gap between CAD and CAE.

키워드

참고문헌

  1. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Computat. Mech., 22(2), 117-127. https://doi.org/10.1007/s004660050346
  2. Bartezzaghi, A., Dede, L. and Quarteroni, A. (2015), "Isogeometric analysis of high order partial differential equations on surfaces", Comput. Methods Appl. Mech. Eng., 295, 446-469. https://doi.org/10.1016/j.cma.2015.07.018
  3. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T., Lipton, S., Scott, M.A. and Sederberg, T.W. (2010), "Isogeometric analysis using T-splines", Comput. Methods Appl. Mech. Eng., 199(5), 229-263. https://doi.org/10.1016/j.cma.2009.02.036
  4. Beirao da Veiga, L., Buffa, A., Sangalli, G. and Vazquez, R. (2013), "Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties", Math. Models Methods Appl. Sci., 23(11), 1979-2003. https://doi.org/10.1142/S0218202513500231
  5. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S. (1985), "Stress projection for membrane and shear locking in shell finite elements", Comput. Methods Appl. Mech. Eng., 51, 221-258. https://doi.org/10.1016/0045-7825(85)90035-0
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Methods Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  7. Bornemann, P. and Cirak, F. (2013), "A subdivision-based implementation of the hierarchical b-spline finite element method", Comput. Methods Appl. Mech. Eng., 253, 584-598. https://doi.org/10.1016/j.cma.2012.06.023
  8. Bressan, A. (2013), "Some properties of LR-splines", Comput. Aid. Geomet. Des., 30. 778-794. https://doi.org/10.1016/j.cagd.2013.06.004
  9. Bressan, A. and Juttler, B. (2015), "A hierarchical construction of LR meshes in 2D", Comput. Aid. Geomet. Des., 37, 9-24. https://doi.org/10.1016/j.cagd.2015.06.002
  10. Buffa, A., Cho, D. and Sangalli, G. (2010), "Linear independence of the T-spline blending functions associated with some particular T-meshes", Comput. Methods Appl. Mech. Eng., 199(23), 1437-1445. https://doi.org/10.1016/j.cma.2009.12.004
  11. Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "An efficient meshfree method for vibration analysis of laminated composite plates", Computat. Mech., 48(2), 175-193. https://doi.org/10.1007/s00466-011-0591-8
  12. Burkhart, D., Hamann, B. and Umlauf, G. (2010), "Iso-geometric Finite Element Analysis Based on Catmull-Clark: ubdivision Solids", In: Computer Graphics Forum, Wiley Online Library, pp. 1575-1584.
  13. Casquero, H., Liu, L., Zhang, Y., Reali, A., Kiendl, J. and Gomez, H. (2017), "Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells", Comput.-Aid. Des., 82, 140-153. https://doi.org/10.1016/j.cad.2016.08.009
  14. Catmull, E. and Clark, J. (1978), "Recursively generated B-spline surfaces on arbitrary topological meshes", Comput.-Aid. Des., 10, 350-355. https://doi.org/10.1016/0010-4485(78)90110-0
  15. Chen, Y., Lee, J. and Eskandarian, A. (2006), Meshless Methods in Solid Mechanics, Springer Science & Business Media.
  16. Cirak, F., Ortiz, M. and Schroder, P. (2000), "Subdivision surfaces: a new paradigm for thin-shell finite-element analysis", Int. J. Numer. Methods Eng., 47, 2039-2072. https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
  17. Cirak, F., Scott, M.J., Antonsson, E.K., Ortiz, M. and Schroder, P. (2002), "Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision", Comput.-Aid. Des., 34, 137-148. https://doi.org/10.1016/S0010-4485(01)00061-6
  18. da Veiga, L.B., Buffa, A., Cho, D. and Sangalli, G. (2012), "Analysis-suitable T-splines are dual-compatible", Comput. Methods Appl. Mech. Eng., 249, 42-51.
  19. Dede, L. and Quarteroni, A. (2015), "Isogeometric Analysis for second order partial differential equations on surfaces", Comput. Methods Appl. Mech. Eng., 284, 807-834. https://doi.org/10.1016/j.cma.2014.11.008
  20. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z. and Feng, Y. (2008), "Polynomial splines over hierarchical T-meshes", Graph. Models, 70, 76-86. https://doi.org/10.1016/j.gmod.2008.03.001
  21. Dokken, T., Lyche, T. and Pettersen, K.F. (2013), "Polynomial splines over locally refined box-partitions", Comput. Aid. Geomet. Des., 30(3), 331-356. https://doi.org/10.1016/j.cagd.2012.12.005
  22. Dorfel, M.R., Juttler, B. and Simeon, B. (2010), "Adaptive isogeometric analysis by local h-refinement with T-splines", Comput. Methods Appl. Mech. Eng., 199(5), 264-275. https://doi.org/10.1016/j.cma.2008.07.012
  23. Evans, E., Scott, M., Li, X. and Thomas, D. (2015), "Hierarchical T-splines: Analysis-suitability, Bezier extraction, and application as an adaptive basis for isogeometric analysis", Comput. Methods Appl. Mech. Eng., 284, 1-20. https://doi.org/10.1016/j.cma.2014.05.019
  24. Flugge, S. and Truesdell, C. (1972), Handbuch der Physik: Encyclopedia of physics. vol. VIa/2, Mechanics of solids II. Festkorpermechanik II. Bd. VIa/2: Springer-Verlag.
  25. Forsey, D.R. and Bartels, R.H. (1988), "Hierarchical B-spline refinement", ACM Siggraph Computer Graphics, 22(4), 205-212. https://doi.org/10.1145/378456.378512
  26. Giannelli, C., JuTtler, B. and Speleers, H. (2012), "THB-splines: The truncated basis for hierarchical splines", Comput. Aid. Geomet. Des., 29, 485-498. https://doi.org/10.1016/j.cagd.2012.03.025
  27. Giannelli, C., Juttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B. and Speh, J. (2016), "THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 299, 337-365. https://doi.org/10.1016/j.cma.2015.11.002
  28. Gonzalez, D., Cueto, E. and Doblare, M. (2008), "Higher-order natural element methods: Towards an isogeometric meshless method", Int. J. Numer. Method. Eng., 74(13), 1928-1954. https://doi.org/10.1002/nme.2237
  29. Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Methods Appl. Mech. Eng., 194(39), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  30. Ivannikov, V., Tiago, C. and Pimenta, P. (2014), "On the boundary conditions of the geometrically nonlinear Kirchhoff-Love shell theory", Int. J. Solids Struct., 51(18), 3101-3112. https://doi.org/10.1016/j.ijsolstr.2014.05.004
  31. Johannessen, K.A., Kvamsdal, T. and Dokken, T. (2014), "Isogeometric analysis using LR B-splines", Comput. Methods Appl. Mech. Eng., 269, 471-514. https://doi.org/10.1016/j.cma.2013.09.014
  32. Johannessen, K.A., Remonato, F. and Kvamsdal, T. (2015), "On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines", Comput. Methods Appl. Mech. Eng., 291, 64-101. https://doi.org/10.1016/j.cma.2015.02.031
  33. Kang, P. and Youn, S.-K. (2016), "Isogeometric topology optimization of shell structures using trimmed NURBS surfaces", Finite Elements in Analysis and Design, 120, 18-40. https://doi.org/10.1016/j.finel.2016.06.003
  34. Khakalo, S. and Niiranen, J. (2017), "Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software", Comput.-Aid. Des., 82, 154-169. https://doi.org/10.1016/j.cad.2016.08.005
  35. Kiss, G., Giannelli, C., Zore, U., Juttler, B., Grossmann, D. and Barner, J. (2014), "Adaptive CAD model (re-) construction with THB-splines", Graph. Models, 76, 273-288. https://doi.org/10.1016/j.gmod.2014.03.017
  36. Kraft, R. (1997), Adaptive and linearly independent multilevel Bsplines: SFB 404, Geschaftsstelle.
  37. Lee, S.-W., Yoon, M. and Cho, S. (2017), "Isogeometric topological shape optimization using dual evolution with boundary integral equation and level sets", Comput.-Aid. Des., 82, 88-99. https://doi.org/10.1016/j.cad.2016.08.004
  38. Li, X., Deng, J. and Chen, F. (2007), "Surface modeling with polynomial splines over hierarchical T-meshes", The Visual Computer, 23(12), 1027-1033. https://doi.org/10.1007/s00371-007-0170-3
  39. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J. and Scott, M.A. (2012), "On linear independence of T-spline blending functions", Comput. Aid. Geomet. Des., 29(1), 63-76. https://doi.org/10.1016/j.cagd.2011.08.005
  40. Liu, G.-R. and Gu, Y. (2001), "A point interpolation method for two-dimensional solids", Int. J. Numer. Methods Eng., 50(4), 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
  41. Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Methods Fluids, 20(8-9), 1081-1106. https://doi.org/10.1002/fld.1650200824
  42. Liu, H., Zhu, X. and Yang, D. (2016), "Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams", Struct. Eng. Mech., Int. J., 59(3), 503-526. https://doi.org/10.12989/sem.2016.59.3.503
  43. Morgenstern, P. and Peterseim, D. (2015), "Analysis-suitable adaptive T-mesh refinement with linear complexity", Comput. Aid. Geomet. Des., 34, 50-66. https://doi.org/10.1016/j.cagd.2015.02.003
  44. Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wuchner, R., Bletzinger, K., Bazilevs, Y. and Rabczuk, T. (2011a), "Rotation free isogeometric thin shell analysis using PHT-splines", Comput. Methods Appl. Mech. Eng., 200, 3410-3424. https://doi.org/10.1016/j.cma.2011.08.014
  45. Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A. and Rabczuk, T. (2011b), "Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids", Comput. Methods Appl. Mech. Eng., 200, 1892-1908. https://doi.org/10.1016/j.cma.2011.01.018
  46. Riffnaller-Schiefer, A., Augsdorfer, U. and Fellner, D. (2016), "Isogeometric shell analysis with NURBS compatible subdivision surfaces", Appl. Math. Computat., 272, 139-147. https://doi.org/10.1016/j.amc.2015.06.113
  47. Rosolen, A. and Arroyo, M. (2013), "Blending isogeometric analysis and local maximum entropy meshfree approximants", Comput. Methods Appl. Mech. Eng., 264, 95-107. https://doi.org/10.1016/j.cma.2013.05.015
  48. Scott, M., Li, X., Sederberg, T. and Hughes, T. (2012), "Local refinement of analysis-suitable T-splines", Comput. Methods Appl. Mech. Eng., 213, 206-222.
  49. Sambridge, M., Braun, J. and McQueen, H. (1995), "Geophysical parametrization and interpolation of irregular data using natural neighbours", Geophys. J. Int., 122(3), 837-857. https://doi.org/10.1111/j.1365-246X.1995.tb06841.x
  50. Schillinger, D., Dede, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E. and Hughes, T.J. (2012), "An isogeometric designthrough-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and Tspline CAD surfaces", Comput. Methods Appl. Mech. Eng., 249, 116-150.
  51. Sederberg, T.W., Zheng, J., Bakenov, A. and Nasri, A. (2003), "Tsplines and T-NURCCs", In: ACM Transactions on Graphics (TOG), ACM, pp. 477-484.
  52. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J. and Lyche, T. (2004), "T-spline simplification and local refinement", In: Acm Transactions on Graphics (tog), ACM, pp. 276-283.
  53. Seo, Y.-D., Kim, H.-J. and Youn, S.-K. (2010), "Shape optimization and its extension to topological design based on isogeometric analysis", Int. J. Solids Struct., 47(11), 1618-1640. https://doi.org/10.1016/j.ijsolstr.2010.03.004
  54. Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), "Combination of isogeometric analysis and extended finite element in linear crack analysis", Struct. Eng. Mech., Int. J., 48(1), 125-150. https://doi.org/10.12989/sem.2013.48.1.125
  55. Somireddy, M. and Rajagopal, A. (2014), "Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates", Compos. Struct., 111, 138-146. https://doi.org/10.1016/j.compstruct.2013.12.023
  56. Tagliabue, A., Dede, L. and Quarteroni, A. (2014), "Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics", Comput. Fluids, 102, 277-303. https://doi.org/10.1016/j.compfluid.2014.07.002
  57. Taheri, A.H., Hassani, B. and Moghaddam, N. (2014), "Thermoelastic optimization of material distribution of functionally graded structures by an isogeometrical approach", Int. J. Solids Struct., 51(2), 416-429. https://doi.org/10.1016/j.ijsolstr.2013.10.014
  58. Uhm, T.K. and Youn, S.K. (2009), "T-spline finite element method for the analysis of shell structures", Int. J. Numer. Method. Eng., 80(4), 507-536. https://doi.org/10.1002/nme.2648
  59. unther Greiner, G. and Hormann, K. (1996), "Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines", In: Proceedings of Chamonix, pp. 1.
  60. Valizadeh, N., Bazilevs, Y., Chen, J. and Rabczuk, T. (2015), "A coupled IGA-Meshfree discretization of arbitrary order of accuracy and without global geometry parameterization", Comput. Methods Appl. Mech. Eng., 293, 20-37. https://doi.org/10.1016/j.cma.2015.04.002
  61. Vuong, A.-V., Giannelli, C., Juttler, B. and Simeon, B. (2011), "A hierarchical approach to adaptive local refinement in isogeometric analysis", Comput. Methods Appl. Mech. Eng., 200, 3554-3567. https://doi.org/10.1016/j.cma.2011.09.004
  62. Wang, P., Xu, J., Deng, J. and Chen, F. (2011), "Adaptive isogeometric analysis using rational PHT-splines", Comput.-Aid. Des., 43, 1438-1448. https://doi.org/10.1016/j.cad.2011.08.026
  63. Wawrzinek, A., Hildebrandt, K. and Polthier, K. (2011), "Koiter's Thin Shells on Catmull-Clark Limit Surfaces", In: VMV, pp . 113-120.
  64. Wei, X., Zhang, Y., Hughes, T.J. and Scott, M.A. (2015), "Truncated hierarchical Catmull-Clark subdivision with local refinement", Comput. Methods Appl. Mech. Eng., 291, 1-20. https://doi.org/10.1016/j.cma.2015.03.019
  65. Willberg, C. (2016), "Analysis of the dynamical behavior of piezoceramic actuators using piezoelectric isogeometric finite elements", Adv. Computat. Des., Int. J., 1(1), 37-60.
  66. Zore, U. and Juttler, B. (2014), "Adaptively refined multilevel spline spaces from generating systems", Comput. Aid. Geomet. Des., 31, 545-566. https://doi.org/10.1016/j.cagd.2014.04.003