DOI QR코드

DOI QR Code

A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells

  • Zine, Abdallah (Material and Hydrology Laboratory, University of SidiBel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of SidiBel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Draiche, Kada (Material and Hydrology Laboratory, University of SidiBel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Sekkal, Mohamed (Material and Hydrology Laboratory, University of SidiBel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mahmoud, S.R. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2017.02.28
  • Accepted : 2017.10.02
  • Published : 2018.01.25

Abstract

In this work, the bending and free vibration analysis of multilayered plates and shells is presented by utilizing a new higher order shear deformation theory (HSDT). The proposed involves only four unknowns, which is even less than the first shear deformation theory (FSDT) and without requiring the shear correction coefficient. Unlike the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral variables. The equations of motion are derived by using the Hamilton's principle. These equations are then solved via Navier-type, closed form solutions. Bending and vibration results are found for cylindrical and spherical shells and plates for simply supported boundary conditions. Bending and vibration problems are treated as individual cases. Panels are subjected to sinusoidal, distributed and point loads. Results are presented for thick to thin as well as shallow and deep shells. The computed results are compared with the exact 3D elasticity theory and with several other conventional HSDTs. The proposed HSDT is found to be precise compared to other several existing ones for investigating the static and dynamic response of isotropic and multilayered composite shell and plate structures.

Keywords

References

  1. Abdelbari, S., Fekrar, A., Heireche, H., Saidi, H., Tounsi, A. and Adda Bedia, E.A. (2016), "An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations", Wind Struct., Int. J., 22(3), 329-348. https://doi.org/10.12989/was.2016.22.3.329
  2. Abdelhak, Z., Hadji, L., Hassaine Daouadji, T. and Adda Bedia, E.A. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., Int. J., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
  3. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2
  4. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil, Struct. Environ., 4(2), 59-64.
  5. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  6. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  7. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  8. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  9. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
  10. Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A firstorder shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain. Shams. Eng. J., 2(1), 53-62. https://doi.org/10.1016/j.asej.2011.05.003
  11. Allen, H.G. (1969), Analysis and Design of Structural Sandwich Plates, Pergamon Press, Oxford, England.
  12. Ambartsumian, S.A. (1958), "On theory of bending plates", IszOtd Tech Nauk AN SSSR, 5, 69-77.
  13. Arya, H., Shimpi, R.P. and Naik, N.K. (2002), "A zigzag model for laminated composite beams", Compos. Struct., 56(1), 21-24. https://doi.org/10.1016/S0263-8223(01)00178-7
  14. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  15. Bakora, A. and Tounsi, A. (2015), "Thermo-mechanical postbuckling behavior of thick functionally graded plates resting on elastic foundations", Struct. Eng. Mech., Int. J., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085
  16. Batra, R.C. and Vidoli, S. (2002), "Higher-order piezoelectric plate theory derived from a three-dimensional variational principle", AIAA J., 40(1), 91-104. https://doi.org/10.2514/2.1618
  17. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., Int. J., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  18. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., Int. J., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091
  19. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  20. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  21. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  22. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  23. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., Int. J., 62(6), 695-702.
  24. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  25. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., Int. J., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  26. Benbakhti, A., Bachir Bouiadjra, M., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., Int. J., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975
  27. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., Int. J., 65(1), 19-31.
  28. Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct. Int. J., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
  29. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  30. Bert, C.W. (1984), "A critical evaluation of new plate theories applied to laminated composites", Compos. Struct., 2(4), 794-805.
  31. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  32. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614.
  33. Bhaskar, K. and Sivaram, A. (2008), "Untruncated infinite series superposition method for accurate flexural analysis of isotropic/orthotropic rectangular plates with arbitrary edge conditions", Compos. Struct., 83(1), 83-92. https://doi.org/10.1016/j.compstruct.2007.04.001
  34. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  35. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  36. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  37. Boukhari, A., Ait Atmane, H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech, Int. J.., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  38. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  39. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  40. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  41. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  42. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., Int. J., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  43. Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., Int. J., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617
  44. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  45. Carrera, E. (2000), "An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
  46. Carrera, E. (2001), "Developments, ideas, and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayered plates and shells", Appl. Mech. Rev., 54(4), 301-329. https://doi.org/10.1115/1.1385512
  47. Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
  48. Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks", Arch. Comput. Methods Eng., 10(3), 215-296. https://doi.org/10.1007/BF02736224
  49. Demasi, L. (2006), "Treatment of stress variables in advanced multilayered plate elements based upon Reissner's mixed variational theorem", Compos. Struct., 84(19), 1215-1221. https://doi.org/10.1016/j.compstruc.2006.01.036
  50. Demasi, L. (2008), "${\infty}^3Hierarchy$ plate theories for thick and thin composite plates: The generalized unified formulation", Compos. Struct., 84(3), 256-270. https://doi.org/10.1016/j.compstruct.2007.08.004
  51. Demasi, L. (2009a), "${\infty}^6Mixed$ plate theories based on the generalized unified formulation. Part I: Governing equations", Compos. Struct., 87(1), 1-11. https://doi.org/10.1016/j.compstruct.2008.07.013
  52. Demasi, L. (2009b), "${\infty}^6Mixed$ plate theories based on the generalized unified formulation. Part II: Layerwise theories", Compos. Struct., 87(1), 12-22. https://doi.org/10.1016/j.compstruct.2008.07.012
  53. Demasi, L. (2009c), "${\infty}^6Mixed$ plate theories based on the generalized unified formulation. Part III: Advanced mixed high order shear deformation theories", Compos. Struct., 87(3), 183-194. https://doi.org/10.1016/j.compstruct.2008.07.011
  54. Demasi, L. (2009d), "${\infty}^6Mixed$ plate theories based on the generalized unified formulation. Part IV: Zig-zag theories", Compos. Struct., 87(3), 195-205. https://doi.org/10.1016/j.compstruct.2008.07.010
  55. Demasi L. (2009e), "${\infty}^6Mixed$ plate theories based on the generalized unified formulation. Part V: Results", Compos. Struct., 88(1), 1-16. https://doi.org/10.1016/j.compstruct.2008.07.009
  56. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  57. Duc, N.D. and Cong, P.H. (2013), "Nonlinear postbuckling of symmetric S-FGM plates resting on elastic foundations using higher order shear deformation plate theory in thermal environments", Compos. Struct., 100, 566-574. https://doi.org/10.1016/j.compstruct.2013.01.006
  58. Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Computat. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
  59. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  60. El-Hassar, S.M., Benyoucef, S., Heireche, H. and Tounsi, A. (2016), "Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory", Geomech. Eng., Int. J., 10(3), 357-386. https://doi.org/10.12989/gae.2016.10.3.357
  61. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
  62. Fahsi, A., Tounsi, A., Hebali, H.,Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., Int. J., 13(3), 385-410.
  63. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3
  64. Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2005), "Analysis of composite plates by trigonometric shear deformation theory and multiquadrics", Compos. Struct., 83(27), 2225-2237. https://doi.org/10.1016/j.compstruc.2005.04.002
  65. Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos.: Part B, 42(5), 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031
  66. Giunta, G., Biscani, F., Belouettar, S. and Carrera, E. (2011), "Hierarchical modelling of doubly curved laminated composite shells under distributed and localised loadings", Compos.: Part B, 42(4), 682-691. https://doi.org/10.1016/j.compositesb.2011.02.002
  67. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  68. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  69. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., Int. J., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473
  70. Hirwani, C.K., Panda, C.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2016a), "Flexural strength of delaminated composite plate - An experimental validation", Int. J. Damage Mech.
  71. Hirwani, C.K., Patil, R.K., Panda, C.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2016b), "Experimental and numerical analysis of free vibration of delaminated curved panel", Aerosp. Sci. Technol., 54, 353-370. https://doi.org/10.1016/j.ast.2016.05.009
  72. Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", ASCE J. Aerosp. Eng., 30(5),
  73. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  74. Idibi, A., Karama, M. and Touratier, M. (1997), "Comparison of various laminated plate theories", Compos. Struct., 37(2), 173-184. https://doi.org/10.1016/S0263-8223(97)80010-4
  75. Jones, R.M. (1999), Mechanics of Composite Materials, (2nd Ed.), Taylor & Francis, Inc.
  76. Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N
  77. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
  78. Kar, V.R. and Panda, S.K. (2015a), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Latin Am. J. Solids Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691
  79. Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
  80. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermo-mechanical behaviour of FGM cylindrical/hyperbolic/elliptical shell panel with TD and TID properties", J. Press. Vessel Technol., ASME, 138(6).
  81. Kar, V.R. and Panda, S.K. (2016b), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324.
  82. Kar, V.R. and Panda, S.K. (2016c), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/ elliptical shell panel with temperature-dependent and temperature- independent properties", J. Press. Vessel Technol., 138(6), 061206.
  83. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118
  84. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  85. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221.
  86. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125
  87. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behavior of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solid Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  88. Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 223(2), 53-62. https://doi.org/10.1243/14644207JMDA189
  89. Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
  90. Khare, R.K., Kant, T. and Garg, A.K. (2003), "Closed-form thermo-mechanical solutions of higher-order theories of crossply laminated shallow shells", Compos. Struct., 59(3), 313-340. https://doi.org/10.1016/S0263-8223(02)00245-3
  91. Kim, J.S. and Cho, M. (2007), "Enhanced first-order theory based on mixed formulation and transverse normal effect", Int. J. Solids Struct., 44(3), 1256-1276. https://doi.org/10.1016/j.ijsolstr.2006.06.018
  92. Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., Int. J., 63(4), 439-446.
  93. Laoufi, I., Ameur, M., Zidi, M., Adda Bedia, E.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889
  94. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  95. Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  96. Librescu, L. and Khdeir, AA. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory. Part I: Stress and displacement", Compos. Struct., 9(4), 189-213. https://doi.org/10.1016/0263-8223(88)90014-1
  97. Librescu, L., Khdeir, A.A. and Reddy, J.N. (1987), "A comprehensive analysis of the state of stress of elastic anisotropic flat plates using refined theories", ActaMech, 70(1), 57-81.
  98. Lo, K.H., Chiristensen, R.M. and Wu, E.M. (1977), "A higherorder theory of plate deformation. Part 2: Laminated plates", J. Appl. Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155
  99. Mahapatra, T.R., Kar, V.R., Panda, S.K. (2016), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Computat., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119
  100. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modelling, 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  101. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  102. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos.: Part B, 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062
  103. Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48(4), 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
  104. Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  105. Mehar, K. and Panda, S.K. (2017a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol.
  106. Mehar, K. and Panda, S.K. (2017b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos.
  107. Mehar, K. and Panda, S.K. (2017c), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", ASCE, J. Aerosp. Eng., 30(3).
  108. Mehar, K. and Panda, S.K. (2017d), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Computat. Methods, 14(2), 1750019. https://doi.org/10.1142/S0219876217500190
  109. Mehar, K., Panda, S.K. and Patle, B.K. (2017a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos.
  110. Mehar, K., Panda, S.K. and Patle, B.K. (2017b), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466
  111. Meksi, A., Benyoucef, S., Houari, M.S.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., Int. J., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215
  112. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater.
  113. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  114. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  115. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18, 31-38.
  116. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  117. Mouritz, A.P., Gellert, E., Burchill, P. and Challis, K. (2001), "Review of advanced composite structures for naval ships and submarines", Compos. Struct., 53(1), 21-41. https://doi.org/10.1016/S0263-8223(00)00175-6
  118. Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666. https://doi.org/10.1115/1.3171828
  119. Murthy, M.V. (1981), "An improved transverse shear deformation theory for laminated anisotropic plates", NASA Technical Paper 1903.
  120. Oktem, A.S. and Chaudhuri, R.A. (2007), "Levy type Fourier analysis of thick cross-ply doubly curved panels", Compos. Struct., 80(4), 475-488. https://doi.org/10.1016/j.compstruct.2006.05.020
  121. Oktem, A.S. and Chaudhuri, R.A. (2009a), "Higher-order theory based boundary-discontinuous Fourier analysis of simply supported thick cross-ply doubly curved panels", Compos. Struct., 89(3), 448-458. https://doi.org/10.1016/j.compstruct.2008.09.007
  122. Oktem, A.S. and Chaudhuri, R.A. (2009b), "Sensitivity of the response of thick doubly curved cross-ply panels to edge clamping", Compos. Struct., 87(4), 293-306. https://doi.org/10.1016/j.compstruct.2008.01.014
  123. Oktem, A.S. and Soares, C.G. (2011), "Boundary discontinuous Fourier solution for plates and doubly curved panels using a higher order theory", Compos.: Part B, 42(4), 842-850. https://doi.org/10.1016/j.compositesb.2011.01.014
  124. Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
  125. Reddy, J.N. (1984a), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  126. Reddy, J.N. (1984b), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Solids Struct., 20(9-10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
  127. Reddy, J.N. (1986), "A refined shear deformation theory for the analysis of laminated plates", NASA Report 3955.
  128. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Ed.), CRC Press.
  129. Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23(3), 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  130. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
  131. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solids Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
  132. Reissner, E. and Wan, F.Y.M. (1982), "A note on the linear theory of shallow shear deformable shells", J. Appl. Math. Phys., 33(5), 425-427. https://doi.org/10.1007/BF00944452
  133. Roque, C.M.C., Ferreira, A.J.M. and Jorge, R.M.N. (2005), "Modeling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions", Compos.: Part B, 36(8), 559-572. https://doi.org/10.1016/j.compositesb.2005.05.003
  134. Sahoo, S.S., Panda, S.K. and Sen, T.R. (2016), "Effect of delamination on static and dynamic behavior of laminated composite plate", AIAA Journal, 54(8), 2530-2544. https://doi.org/10.2514/1.J054908
  135. Sahoo, S.S., Hirwani, C.K., Panda, S.K. and Sen, D. (2017a), "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Scientia Iranica.
  136. Sahoo, S.S., Panda, S.K., Singh, M.K. and Mahapatra, T.R. (2017b), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8
  137. Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2017c), "Static, free vibration and transient response of laminated composite curved shallow panel-an experimental approach", Eur. J. Mech.-A/Solids, 59, 95-113.
  138. Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017d), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proceedings of IMechE Part L: J. Mater.: Des. Appl., 231(5), 463-478.
  139. Shimpi, R.P. and Aynapure, A.V. (2001), "A beam finite element based on layerwise trigonometric shear deformation theory", Compos. Struct., 53(2), 153-162. https://doi.org/10.1016/S0263-8223(00)00186-0
  140. Shimpi, R.P. and Ghugal, Y.M. (1999), "A layerwise trigonometric shear deformation theory for two layered cross-ply laminated beams", J. Reinf. Plast. Compos, 18(16), 1516-1542. https://doi.org/10.1177/073168449901801605
  141. Shimpi, R.P. and Ghugal, Y.M. (2001), "A new layerwise trigonometric shear deformation theory for two-layered crossply beams", Compos. Sci. Technol., 61(9), 1271-1283. https://doi.org/10.1016/S0266-3538(01)00024-0
  142. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006
  143. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", ActaMech, 94, 195-220.
  144. Swaminathan, K. and Ragounadin, D. (2004), "Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates", Compos. Struct., 64(3), 405-417. https://doi.org/10.1016/j.compstruct.2003.09.042
  145. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  146. Swanson, S.R. (1997), Introduction to Design and Analysis with Advanced Composite Materials, Prentice Hall Inc.
  147. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904
  148. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  149. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., Int. J., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  150. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  151. Xiang, S., Wang, K., Ai, Y., Sha, Y. and Shi, H. (2009), "Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories", Compos. Struct., 91(1), 31-37. https://doi.org/10.1016/j.compstruct.2009.04.029
  152. Zidi, M., Tounsi, A., Houari M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  153. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., Int. J., 64(2), 145-153.

Cited by

  1. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  2. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
  3. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
  4. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  5. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2018, https://doi.org/10.12989/was.2019.29.6.371
  6. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect vol.34, pp.2, 2018, https://doi.org/10.12989/scs.2020.34.2.279
  7. Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method vol.34, pp.3, 2020, https://doi.org/10.12989/scs.2020.34.3.361
  8. Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.303
  9. Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.243