References
- Akbas, S.D. (2014), "Wave propagation analysis of edge cracked circular beams under impact force", PloS One, 9(6), e100496. https://doi.org/10.1371/journal.pone.0100496
- Akbas, S.D. (2015a), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451. https://doi.org/10.12989/sem.2015.54.3.433
- Akbas, S.D. (2015b), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dyn., 15(04), 1450065. https://doi.org/10.1142/S0219455414500655
- Akbas, S.D. (2016a), "Post-buckling analysis of edge cracked columns under axial compression loads", Int. J. Appl. Mech., 8(8), 1650086. https://doi.org/10.1142/S1758825116500861
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Aliabadi, M.H. and Rooke, D.P. (1991), "The boundary element method", Numer. Fract. Mech., 90-139.
- Alwar, R.S. and Nambissan, K.N. (1983), "Three-dimensional finite element analysis of cracked thick plates in bending", Int. J. Numer. Meth. Eng., 19(2), 293-303. https://doi.org/10.1002/nme.1620190210
- Atluri, S.N., Kobayashi, A.S. and Nakagaki, M. (1975), "An assumed displacement hybrid finite element model for linear fracture mechanics", Int. J. Fract., 11(2), 257-271. https://doi.org/10.1007/BF00038893
- Banks-Sills, L. and Bortman, Y. (1984), "Reappraisal of the quarter-point quadrilateral element in linear elastic fracture mechanics", Int. J. Fract., 25(3), 169-180. https://doi.org/10.1007/BF01140835
- Banks-Sills, L. and Sherman, D. (1989), "On quarter-point three-dimensional finite elements in linear elastic fracture mechanics", Int. J. Fract., 41(3), 177-196. https://doi.org/10.1007/BF00018656
- Barsoum, R.S. (1976), "On the use of isoparametric finite elements in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10(1), 25-37. https://doi.org/10.1002/nme.1620100103
- Behera, S., Sahu, S.K. and Asha, A.V. (2015), "Vibration analysis of laminated composite beam with transverse cracks", Adv. Struct. Eng., 67-75.
- Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fract. Mech., 51(2), 295-315. https://doi.org/10.1016/0013-7944(94)00153-9
- Bordas, S.P., Rabczuk, T., Hung, N.X., Nguyen, V.P., Natarajan, S., Bog, T. and Hiep, N.V. (2010), "Strain smoothing in FEM and XFEM", Comput. Struct., 88(23), 1419-1443. https://doi.org/10.1016/j.compstruc.2008.07.006
- Bouboulas, A.S. and Anifantis, N.K. (2008), "Formulation of cracked beam element for analysis of fractured skeletal structures", Eng. Struct., 30(4), 894-901. https://doi.org/10.1016/j.engstruct.2007.05.025
- Christides, S. and Barr, A.D S. (1984), "One-dimensional theory of cracked Bernoulli-Euler beams", Int. J. Mech. Sci., 26(11-12), 639-648. https://doi.org/10.1016/0020-7403(84)90017-1
- De Luycker, E., Benson, D.J., Belytschko, T., Bazilevs, Y. and Hsu, M.C. (2011), "X-FEM in isogeometric analysis for linear fracture mechanics", Int. J. Numer. Meth. Eng., 87(6), 541-565. https://doi.org/10.1002/nme.3121
- Dolbow, J.O., Moes, H.N. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- Duflot, M. and Nguyen-Dang, H. (2004), "A meshless method with enriched weight functions for fatigue crack growth", Int. J. Numer. Meth. Eng., 59(14), 1945-1961. https://doi.org/10.1002/nme.948
- Fan, Y. and Wang, H. (2015), "Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments", Compos. Struct., 124, 35-43. https://doi.org/10.1016/j.compstruct.2014.12.050
- Fett, T. and Munz, D. (1997), Stress Intensity Factors and Weight Functions, Vol. 1, Computational Mechanics.
- Formica, G. and Milicchio, F. (2016), "Crack growth propagation using standard FEM", Eng. Fract. Mech., 165, 1-18. https://doi.org/10.1016/j.engfracmech.2016.08.015
- Gray, L.J., Phan, A.V., Paulino, G.H. and Kaplan, T. (2003), "Improved quarter-point crack tip element", Eng. Fract. Mech., 70(2), 269-283. https://doi.org/10.1016/S0013-7944(02)00027-9
- Guinea, G.V., Pastor, J.Y., Planas, J. and Elices, M. (1998), "Stress intensity factor, compliance and CMOD for a general three-point-bend beam", Int. J. Fract., 89(2), 103-116. https://doi.org/10.1023/A:1007498132504
- Henshell, R.D. and Shaw, K.G. (1975), "Crack tip finite elements are unnecessary", Int. J. Numer. Meth. Eng., 9(3), 495-507. https://doi.org/10.1002/nme.1620090302
- Hussain, M.A., Coffin, L.F. and Zaleski, K.A. (1981), "Three dimensional singular element", Comput. Struct., 13(5-6), 595-599. https://doi.org/10.1016/0045-7949(81)90020-1
- Ibrahim, A.M., Ozturk, H. and Sabuncu, M. (2013), "Vibration analysis of cracked frame structures", Struct. Eng. Mech., 45(1), 33-52. https://doi.org/10.12989/sem.2013.45.1.033
- Kisa, M. (2012), "Vibration and stability of axially loaded cracked beams", Struct. Eng. Mech., 44(3), 305-323. https://doi.org/10.12989/sem.2012.44.3.305
- Kisa, M. and Brandon, J. (2000), "The effects of closure of cracks on the dynamics of a cracked cantilever beam", J. Sound Vib., 238(1), 1-18. https://doi.org/10.1006/jsvi.2000.3099
- Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. https://doi.org/10.1016/S0045-7949(98)00056-X
- Krawczuk, M. (1993), "A rectangular plate finite element with an open crack", Comput. Struct., 46(3), 487-493. https://doi.org/10.1016/0045-7949(93)90218-3
- Lin, K.Y. and Mar, J.W. (1976), "Finite element analysis of stress intensity factors for cracks at a bi-material interface", Int. J. Fract., 12(4), 521-531. https://doi.org/10.1007/BF00034638
- Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., 53(4), 767-780. https://doi.org/10.12989/sem.2015.53.4.767
- Ma, F.J. and Kwan, A.K.H. (2015), "Crack width analysis of reinforced concrete members under flexure by finite element method and crack queuing algorithm", Eng. Struct., 105, 209-219. https://doi.org/10.1016/j.engstruct.2015.10.012
- Manu, C. (1983), "Quarter-point elements for curved crack fronts", Comput. Struct., 17(2), 227-231. https://doi.org/10.1016/0045-7949(83)90010-X
- Mi, Y. and Aliabadi, M.H. (1992), "Dual boundary element method for three-dimensional fracture mechanics analysis", Eng. Anal. Bound. Elem., 10(2), 161-171. https://doi.org/10.1016/0955-7997(92)90047-B
- Millwater, H., Wagner, D., Baines, A., & Montoya, A. (2016), "A virtual crack extension method to compute energy release rates using a complex variable finite element method", Eng. Fract. Mech., 162, 95-111. https://doi.org/10.1016/j.engfracmech.2016.04.002
- Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comput. Meth. Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017
- Nguyen-Xuan, H., Liu, G.R., Nourbakhshnia, N. and Chen, L. (2012), "A novel singular ES-FEM for crack growth simulation", Eng. Fract. Mech., 84, 41-66. https://doi.org/10.1016/j.engfracmech.2012.01.001
- Okamura, H., Watanabe, K. and Takano, T. (1973), "Applications of the compliance concept in fracture mechanics", Progress in Flaw Growth and Fracture Toughness Testing, ASTM International.
- Pian, T.H.H. and Moriya, K. (1978), "Three-dimensional fracture analysis by assumed stress hybrid elements", Numer. Meth. Fract. Mech., 363-373.
- Pian, T.H.H., Tong, P. and Luk, C.H. (1971), Elastic Crack Analysis by a Finite Element Hybrid Method, Massachusetts Inst. of Tech. Cambridge.
- Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2017), "A cracked element based on the compliance concept", Theor. Appl. Fract. Mech., 92, 122-132. https://doi.org/10.1016/j.tafmec.2017.05.022
- Rezaiee-Pajand, M. and Mousavi, R., (2009), "Formulating a Triangular element with elasto-plastic crack", J. Civil Environ. Eng., Ferdowsi Univ. Mashhad, 1, 1-14. (in Persian)
- Saavedra, P.N. and Cuitino, L.A. (2001), "Crack detection and vibration behavior of cracked beams", Comput. Struct., 79(16), 1451-1459. https://doi.org/10.1016/S0045-7949(01)00049-9
- Salah, B., Hamoudi, B., Noureddine, B. and Mohamed, G. (2014), "Energy release rate for kinking crack using mixed finite element", Struct. Eng. Mech., 50(5), 665-677. https://doi.org/10.12989/sem.2014.50.5.665
- Schnack, E. and Wolf, M. (1978), "Application of displacement and hybrid strees methods to plane notch and crack problems", Int. J. Numer. Meth. Eng., 12(6), 963-975. https://doi.org/10.1002/nme.1620120608
- Shen, M.H. and Pierre, C. (1990), "Natural modes of Bernoulli-Euler beams with symmetric cracks", J. Sound Vib., 138(1), 115-134. https://doi.org/10.1016/0022-460X(90)90707-7
- Skrinar, M. (2013), "Computational analysis of multi-stepped beams and beams with linearly-varying heights implementing closed-form finite element formulation for multi-cracked beam elements", Int. J. Solid. Struct., 50(14), 2527-2541. https://doi.org/10.1016/j.ijsolstr.2013.04.005
- Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid-element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7(3), 297-308. https://doi.org/10.1002/nme.1620070307
- Ventura, G., Gracie, R. and Belytschko, T. (2009), "Fast integration and weight function blending in the extended finite element method", Int. J. Numer. Meth. Eng., 77(1), 1-29. https://doi.org/10.1002/nme.2387
- Verhoosel, C.V., Scott, M.A., De Borst, R. and Hughes, T.J. (2011), "An isogeometric approach to cohesive zone modeling", Int. J. Numer. Meth. Eng., 87(1-5), 336-360. https://doi.org/10.1002/nme.3061
- Viola, E., Nobile, L. and Federici, L. (2002), "Formulation of cracked beam element for structural analysis", J. Eng. Mech., 128(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(220)
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
- Zeng, J., Ma, H., Zhang, W. and Wen, B. (2017), "Dynamic characteristic analysis of cracked cantilever beams under different crack types", Eng. Fail. Anal., 74, 80-94. https://doi.org/10.1016/j.engfailanal.2017.01.005
Cited by
- A Force-Based Rectangular Cracked Element vol.13, pp.4, 2018, https://doi.org/10.1142/s1758825121500472
- A coupled experimental and numerical simulation of concrete joints' behaviors in tunnel support using concrete specimens vol.28, pp.2, 2021, https://doi.org/10.12989/cac.2021.28.2.189