참고문헌
- Abadyan, M.R., Tadi Beni, Y. and Noghrehabadi, A. (2011), "Investigation of elastic boundary condition on the pull-in instability of beam-type NEMS under van der Waals attraction", Procedia Eng., 10, 1724-1729. https://doi.org/10.1016/j.proeng.2011.04.287
- Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler micro beams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020
- Alibeigloo, A. and Shaban, M. (2013), "Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity", Acta Mechanic, 224(7), 1415-1427. https://doi.org/10.1007/s00707-013-0817-2
- Ansari, R., Ajori, S. and Arash, B. (2012), "Vibrations of single- and double-walled carbon nanotubes with layer wise boundary conditions: A molecular dynamics study", Curr. Appl. Phys., 12, 707-711. https://doi.org/10.1016/j.cap.2011.10.007
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E., 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nano beams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Chong, C.M. and Lam, D.C.C. (1999), "Strain gradient plasticity effect in indentation hardness of polymers", J. Mater. Res., 14, 4103-4110. https://doi.org/10.1557/JMR.1999.0554
- Chyuan, S.W. (2008), "Computational simulation for MEMS comb drive levitation using FEM", J. Electrost., 66, 361-365. https://doi.org/10.1016/j.elstat.2008.03.005
- Ebrahimi, N. and Tadi Beni, Y. (2016), "Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory", Steel Compos. Struct., 22(6), 1301-1336. https://doi.org/10.12989/scs.2016.22.6.1301
- Eringen, A.C. (1980), Mechanics of Continua, R.E. Krieger Pub. Co.
- Fattahian Dehkordi, S. and Tadi Beni, Y. (2017), "Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory", Int. J. Mech. Sci., 128-129, 125-139. https://doi.org/10.1016/j.ijmecsci.2017.04.004
- Fleck, N.A. and Hutchinson, J.W. (1997), "Strain gradient plasticity", Eds. John, W.H. & Theodore, Y.W., Adv. Appl. Mech., 295-361.
- Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Nonlinear dynamics of a micro scale beam based on the modified couple stress theory", Compos. Part B, 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
- Ji, B. and Chen, W. (2009), "Measuring material length parameter with a new solution of microbend beam in couple stress elasto-plasticity", Struct. Eng. Mech., 33(2), 257-260. https://doi.org/10.12989/sem.2009.33.2.257
- Kang, X. and Xi, X.F. (2007), "Size effect on the dynamic characteristic of a micro beam based on Cosserat theory", J. Mech. Strength., 29(1), 1-4.
- Kheibari, F. and Tadi Beni, Y. (2017), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a micro beam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", Proc. Koninklijke Nederl. Akaad. van Wetensch, 67, 17-44.
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Li, C. (2013), "Size-dependent thermal behaviors of axially traveling nano beams based on a strain gradient theory", Struct. Eng. Mech., 48(3), 415-434. https://doi.org/10.12989/sem.2013.48.3.415
- Li, C. (2014a), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. https://doi.org/10.1016/j.compstruct.2014.08.008
- Li, C. (2014b), "Torsional vibration of carbon nanotubes: Comparison of two nonlocal models and a semi-continuum model", Int. J. Mech. Sci., 82, 25-31. https://doi.org/10.1016/j.ijmecsci.2014.02.023
- Li, C., Li, S., Yao L.Q. and Zhu, Z.K. (2015b), "Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Math. Model., 39, 4570-4585. https://doi.org/10.1016/j.apm.2015.01.013
- Li, C., Lim, C.W. and Yu, J.L. (2011a), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20(1), 15-23.
- Li, C., Lim, C.W., Yu, J.L. and Zeng, Q.C. (2011b), "Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force", Int. J. Struct. Stab. Dyn., 11(2), 257-271. https://doi.org/10.1142/S0219455411004087
- Li, C., Lim, C.W., Yu, J.L. and Zeng, Q.C. (2011c), "Transverse vibration of pre-tensioned nonlocal nanobeams with precise internal axial loads", Sci. China Technol. Sci., 54(8), 2007-2013. https://doi.org/10.1007/s11431-011-4479-9
- Li, C., Yao, L.Q., Chen, W.Q. and Li, S. (2015a), "Comments on nonlocal effects in nano-cantilever beams", Int. J. Eng. Sci., 87, 47-57. https://doi.org/10.1016/j.ijengsci.2014.11.006
- Lim, C.W., Li, C. and Yu, J.L. (2012), "Free torsional vibration of nanotubes based on nonlocal stress theory", J. Sound Vib., 331, 2798-2808. https://doi.org/10.1016/j.jsv.2012.01.016
- Liu, J.J., Li, C., Yang, C.J. Shen, J.P. and Xie, F. (2016), "Dynamical responses and stabilities of axially moving nanoscale beams with time-dependent velocity using a nonlocal stress gradient theory", J. Vib. Control, 1077546316629013.
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mehralian, F. and Tadi Beni, Y. (2016), "Size-dependent torsional buckling analysis of functionally graded cylindrical shell", Compos. Part B: Eng., 94, 11-25. https://doi.org/10.1016/j.compositesb.2016.03.048
- Metz, P., Alici, G. and Spinks, G.M. (2006), "A finite element model for bending behavior of conducting polymer electromechanical actuators", Sens. Actuats. A, 130, 1-11.
- Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Anal., 16, 51-78.
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rat. Mech. Anal., 11, 415-448. https://doi.org/10.1007/BF00253946
- Mohammadi Dashtaki, P. and Tadi Beni, Y. (2014), "Effects of Casimir force and thermal stresses on the buckling of electrostatic nano-bridges based on couple stress theory", Arab. J. Sci. Eng., 39, 5753-5763. https://doi.org/10.1007/s13369-014-1107-6
- Mohammadimehr, M., Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
- Noghrehabadi, A., Tadi Beni, Y., Koochi, A., Kazemi, A., Yekrangi, A., Abadyan, M. and Noghrehabadi, M. (2011), "Closed-form approximations of the pull-in parameters and stress field of electrostatic cantilever nano-actuators considering van der Waals attraction", Procedia Eng., 10, 3750-3756. https://doi.org/10.1016/j.proeng.2011.04.613
- Pradhan, S.C. and Phadikar, J.K. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193-213. https://doi.org/10.12989/sem.2009.33.2.193
- Reddy, J.N. and Berry, J. (2012), "Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress", Compos. Struct., 94, 3664-3668. https://doi.org/10.1016/j.compstruct.2012.04.019
- Sahmani, S. and Ansari, R. (2013), "On the free vibration response of functionally graded higher-order shear deformable micro plates based on the strain gradient elasticity theory", Compos. Struct., 95, 430-442. https://doi.org/10.1016/j.compstruct.2012.07.025
- Simsek, M. (2014), "Nonlinear static and free vibration analysis of micro beams based on the non-linear elastic foundation using modified couple stress theory and he's variational method", Compos. Struct., 112, 264-272 https://doi.org/10.1016/j.compstruct.2014.02.010
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded micro beams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Simsek, M., Kocaturk, T. and Akbas, S. (2013), "Static bending of a functionally graded micro scale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Tadi Beni, Y. (2016), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011
- Tadi Beni, Y. (2016), "Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intel. Mater. Syst. Struct., 27(16), 2199-2215. https://doi.org/10.1177/1045389X15624798
- Tadi Beni, Y. and Abadyan, M. (2013), "Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force", Int. J. Modern Phys. B, 27(18), 1350083. https://doi.org/10.1142/S0217979213500835
- Tadi Beni, Y., Karimipour, I. and Abadyan, M. (2015), "Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory", Appl. Math. Model., 39, 2633-2648. https://doi.org/10.1016/j.apm.2014.11.011
- Tadi Beni, Y., Koochi, A. and Abadyan, M. (2014), "Using modified couple stress theory for modeling the size dependent pull-in instability of torsional nano-mirror under Casimir force", Int. J. Opto Mech., 8, 47-71.
- Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4), 755-769. https://doi.org/10.12989/sem.2015.54.4.755
- Tajalli, S.A., Moghimi Zand, M. and Ahmadian, M.T. (2009), "Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories", Eur. J. Mech. A Solid., 28, 916-925. https://doi.org/10.1016/j.euromechsol.2009.04.003
- Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Rat. Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
- Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Nonlinear free vibration of a micro scale beam based on modified couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 47, 80-85. https://doi.org/10.1016/j.physe.2012.10.020
- Wu, D.H., Chien, W.T., Yang, C.J. and Yen, Y.T. (2005), "Coupled- field analysis of piezoelectric beam actuator using FEM", Sens. Actuators. A, 118, 171 -176. https://doi.org/10.1016/j.sna.2004.04.017
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress Based Strain gradient theory for elasticity", Int. J. Solid. Struct., 39, 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D, Appl. Phys., 41, 035103. https://doi.org/10.1088/0022-3727/41/3/035103
- Zeighampour, H. and Tadi Beni, Y. (2014), "Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory", Physica E: Low-dimens. Syst. Nanostruct., 61, 28-39. https://doi.org/10.1016/j.physe.2014.03.011
- Zeighampour, H. and Tadi Beni, Y. (2015), "A shear deformable conical shell formulation in the framework of couple stress theory", Acta Mechanica, 226, 2607-2629. https://doi.org/10.1007/s00707-015-1318-2
- Zeighampour, H. and Tadi Beni, Y. (2015), "A shear deformable cylindrical shell model based on couple stress theory", Arch. Appl. Mech., 85, 539-553. https://doi.org/10.1007/s00419-014-0929-8
- Zhang, B., He, Y., Liu, D., Gan, Z. and Shen, L. (2014), "Non-classical Timoshenko beam element based on the strain gradient elasticity theory", Finite Elem. Anal. Des., 79, 22-39. https://doi.org/10.1016/j.finel.2013.10.004
- Zhao, J. and Pedroso, D. (2008), "Strain gradient theory in orthogonal curvilinear coordinates", Int. J. Solid. Struct., 45, 3507-3520. https://doi.org/10.1016/j.ijsolstr.2008.02.011
- Zhou, S.J. and Li, Z.Q (2001), "Length scales in the static and dynamic torsion of a circular cylindrical micro-bar", J. Shandong Univ. Technol., 31(5), 401-407.
피인용 문헌
- Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect vol.34, pp.5, 2020, https://doi.org/10.12989/scs.2020.34.5.657