참고문헌
- Albarracin, C.M. and Grossi, R.O. (2005), "Vibrations of elastically restrained frames", J. Sound Vib., 285, 467-476. https://doi.org/10.1016/j.jsv.2004.09.013
- Banerjee, J.R. (1997), "Dynamic stiffness for structural elements: A general approach", Comput. Struct., 63, 101-103. https://doi.org/10.1016/S0045-7949(96)00326-4
- Banerjee, J.R. (2012), "Free vibration of beams carrying spring-mass systems-A dynamic stiffness approach", Comput. Struct., 104-105, 21-26. https://doi.org/10.1016/j.compstruc.2012.02.020
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Bao-hui, L., Hang-shan, G., Hong-bo, Z., Yong-shou, L. and Zhou-feng, Y. (2011), "Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method", Nucl. Eng. Des., 241, 666-671. https://doi.org/10.1016/j.nucengdes.2010.12.002
- Bickford, W.B. (1982), "A consistent higher order beam theory", Develop. Theor. Appl. Mech., 11, 137-150.
- Bozyigit, B. and Yesilce, Y. (2016), "Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam", Struct. Eng. Mech., 58(5), 847-868. https://doi.org/10.12989/sem.2016.58.5.847
- Caddemi, S. and Calio, I. (2013), "The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures", J. Sound Vib., 332, 3049-3063. https://doi.org/10.1016/j.jsv.2013.01.003
- Caddemi, S., Calio, I. and Cannizzaro, F. (2017), "The Dynamic Stiffness Matrix (DSM) of axially loadad multi-cracked frames", Mech. Res. Commun., 84, 90-97. https://doi.org/10.1016/j.mechrescom.2017.06.012
- Chopra, A.K. (2012), Dynamics of Structures-Theory and Applications to Earthquake Engineering, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, USA.
- Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, McGraw-Hill Book Co. Computers & Structures Inc., USA.
- Ghugal, Y.M. and Shimpi, R.P. (2001), "A review of refined shear deformation theories for isotropic and anisotropic laminated beams", J. Reinf. Plast. Compos., 20, 255-272. https://doi.org/10.1177/073168401772678283
- Grossi, R.O. and Albarracin, C.M. (2013), "Variational approach to vibrations of frames with inclined members", Appl. Acoust., 74, 325-334. https://doi.org/10.1016/j.apacoust.2012.07.014
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 936-988.
- Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126, 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
- Jun, L., Hongxing, H. and Rongying, H. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Comput. Struct., 84, 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
- Jun, L., Xiang, H. and Xiaobin, L. (2016), "Free vibration analyses of axially loaded laminated compiste beams using a unified higher-order shear deformation theory and dynamic stiffness method", Compos. Struct., 158, 308-322. https://doi.org/10.1016/j.compstruct.2016.09.012
- Labib, A., Kennedy, D. and Featherstone, C. (2014), "Free vibration analysis of beams and frames with multiple cracks for damage detection", J. Sound Vib., 333, 4991-5003. https://doi.org/10.1016/j.jsv.2014.05.015
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Matlab R2014b (2014), The MathWorks, Inc.
- Mehmood, A. (2015), "Using finite element method vibration analysis of frame structure subjected to moving loads", Int. J. Mech. Eng. Robot. Res., 4(1), 50-65.
- Mei, C. (2012), "Free vibration analysis of classical single-storey multi-bay planar frames", J. Vib. Control, 19(13), 2022-2035. https://doi.org/10.1177/1077546312455081
- Mei, C. and Sha, H. (2015), "Analytical and experimental study of vibrations in simple spatial structures", J. Vib. Control, 22(17), 1-25.
- Minghini, F., Tullini, N. and Laudiero, F. (2010), "Vibration analysis of pultruded FRP frames with semi-rigid connections", Eng. Struct., 32, 3344-3354. https://doi.org/10.1016/j.engstruct.2010.07.008
- Ozturk, H., Yashar, A. and Sabuncu, M. (2016), "Dynamic stability of cracked multi-bay frame structres", Mech. Adv. Mater. Struct., 23(6), 715-726. https://doi.org/10.1080/15376494.2015.1029160
- Ozyigit, H.A. (2009), "Linear vibrations of frames carrying a concentrated mass", Math. Comput. Appl., 14(3), 197-206.
- Paz, M. and Leigh, W. (2004), Structural Dynamics-Theory and Computation, Kluwer Academic Publishers, USA.
- Ranjbaran, A. (2014), "Free-vibration of stiffened frames", J. Eng. Mech., 140(9), 040140711-040140719.
- Rao, S.S. (1995), Mechanical Vibrations, Addison-Wesley Publishing Company, USA.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Shimpi, R.P. (2002), "Refined plate theory and its variants", Am. Inst. Aeronaut. Astronaut. J., 40, 137-146. https://doi.org/10.2514/2.1622
- Shimpi, R.P., Patel, H.G. and Arya, H. (2007), "New first order shear deformation plate theories", J. Appl. Mech., 74, 523-533. https://doi.org/10.1115/1.2423036
- Shimpi, R.P., Shetty, R.A. and Guha, A. (2016), "A simple single variable shear deformation theory for a rectangular beam", J. Mech. Eng. Sci., 231(24), 4576-4591.
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
- Tuma, J.J. and Cheng, F.Y. (1983), Theory and Problems of Dynamic Structural Analysis, Schaum's Outline Series, McGRAW-HILL, INC.
- Wu, J.J. (2008), "Transverse and longitudinal vibrations of a frame structure due to a moving trolley and the hoisted object using moving finite element", Int. J. Mech. Sci., 50, 613-625. https://doi.org/10.1016/j.ijmecsci.2008.02.001