DOI QR코드

DOI QR Code

Investigation of natural frequencies of multi-bay and multi-storey frames using a single variable shear deformation theory

  • Bozyigit, Baran (Department of Civil Engineering, Dokuz Eylul University) ;
  • Yesilce, Yusuf (Department of Civil Engineering, Dokuz Eylul University)
  • 투고 : 2017.03.09
  • 심사 : 2017.11.07
  • 발행 : 2018.01.10

초록

This study concerns about calculating exact natural frequencies of frames using a single variable shear deformation theory (SVSDT) which considers the parabolic shear stress distribution across the cross section. Free vibration analyses are performed for multi-bay, multi-storey and multi-bay multi-storey type frame structures. Dynamic stiffness formulations are derived and used to obtain first five natural frequencies of frames. Different beam and column cross sections are considered to reveal their effects on free vibration analysis. The calculated natural frequencies are tabulated with the results obtained using Euler-Bernoulli Beam Theory (EBT) and Timoshenko Beam Theory (TBT). Moreover, the effects of inner and outer columns on natural frequencies are compared for multi-bay frames. Several mode shapes are plotted.

키워드

참고문헌

  1. Albarracin, C.M. and Grossi, R.O. (2005), "Vibrations of elastically restrained frames", J. Sound Vib., 285, 467-476. https://doi.org/10.1016/j.jsv.2004.09.013
  2. Banerjee, J.R. (1997), "Dynamic stiffness for structural elements: A general approach", Comput. Struct., 63, 101-103. https://doi.org/10.1016/S0045-7949(96)00326-4
  3. Banerjee, J.R. (2012), "Free vibration of beams carrying spring-mass systems-A dynamic stiffness approach", Comput. Struct., 104-105, 21-26. https://doi.org/10.1016/j.compstruc.2012.02.020
  4. Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
  5. Bao-hui, L., Hang-shan, G., Hong-bo, Z., Yong-shou, L. and Zhou-feng, Y. (2011), "Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method", Nucl. Eng. Des., 241, 666-671. https://doi.org/10.1016/j.nucengdes.2010.12.002
  6. Bickford, W.B. (1982), "A consistent higher order beam theory", Develop. Theor. Appl. Mech., 11, 137-150.
  7. Bozyigit, B. and Yesilce, Y. (2016), "Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam", Struct. Eng. Mech., 58(5), 847-868. https://doi.org/10.12989/sem.2016.58.5.847
  8. Caddemi, S. and Calio, I. (2013), "The exact explicit dynamic stiffness matrix of multi-cracked Euler-Bernoulli beam and applications to damaged frame structures", J. Sound Vib., 332, 3049-3063. https://doi.org/10.1016/j.jsv.2013.01.003
  9. Caddemi, S., Calio, I. and Cannizzaro, F. (2017), "The Dynamic Stiffness Matrix (DSM) of axially loadad multi-cracked frames", Mech. Res. Commun., 84, 90-97. https://doi.org/10.1016/j.mechrescom.2017.06.012
  10. Chopra, A.K. (2012), Dynamics of Structures-Theory and Applications to Earthquake Engineering, Prentice-Hall International Series in Civil Engineering and Engineering Mechanics, USA.
  11. Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, McGraw-Hill Book Co. Computers & Structures Inc., USA.
  12. Ghugal, Y.M. and Shimpi, R.P. (2001), "A review of refined shear deformation theories for isotropic and anisotropic laminated beams", J. Reinf. Plast. Compos., 20, 255-272. https://doi.org/10.1177/073168401772678283
  13. Grossi, R.O. and Albarracin, C.M. (2013), "Variational approach to vibrations of frames with inclined members", Appl. Acoust., 74, 325-334. https://doi.org/10.1016/j.apacoust.2012.07.014
  14. Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 936-988.
  15. Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vib., 126, 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
  16. Jun, L., Hongxing, H. and Rongying, H. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Comput. Struct., 84, 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
  17. Jun, L., Xiang, H. and Xiaobin, L. (2016), "Free vibration analyses of axially loaded laminated compiste beams using a unified higher-order shear deformation theory and dynamic stiffness method", Compos. Struct., 158, 308-322. https://doi.org/10.1016/j.compstruct.2016.09.012
  18. Labib, A., Kennedy, D. and Featherstone, C. (2014), "Free vibration analysis of beams and frames with multiple cracks for damage detection", J. Sound Vib., 333, 4991-5003. https://doi.org/10.1016/j.jsv.2014.05.015
  19. Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
  20. Matlab R2014b (2014), The MathWorks, Inc.
  21. Mehmood, A. (2015), "Using finite element method vibration analysis of frame structure subjected to moving loads", Int. J. Mech. Eng. Robot. Res., 4(1), 50-65.
  22. Mei, C. (2012), "Free vibration analysis of classical single-storey multi-bay planar frames", J. Vib. Control, 19(13), 2022-2035. https://doi.org/10.1177/1077546312455081
  23. Mei, C. and Sha, H. (2015), "Analytical and experimental study of vibrations in simple spatial structures", J. Vib. Control, 22(17), 1-25.
  24. Minghini, F., Tullini, N. and Laudiero, F. (2010), "Vibration analysis of pultruded FRP frames with semi-rigid connections", Eng. Struct., 32, 3344-3354. https://doi.org/10.1016/j.engstruct.2010.07.008
  25. Ozturk, H., Yashar, A. and Sabuncu, M. (2016), "Dynamic stability of cracked multi-bay frame structres", Mech. Adv. Mater. Struct., 23(6), 715-726. https://doi.org/10.1080/15376494.2015.1029160
  26. Ozyigit, H.A. (2009), "Linear vibrations of frames carrying a concentrated mass", Math. Comput. Appl., 14(3), 197-206.
  27. Paz, M. and Leigh, W. (2004), Structural Dynamics-Theory and Computation, Kluwer Academic Publishers, USA.
  28. Ranjbaran, A. (2014), "Free-vibration of stiffened frames", J. Eng. Mech., 140(9), 040140711-040140719.
  29. Rao, S.S. (1995), Mechanical Vibrations, Addison-Wesley Publishing Company, USA.
  30. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  31. Shimpi, R.P. (2002), "Refined plate theory and its variants", Am. Inst. Aeronaut. Astronaut. J., 40, 137-146. https://doi.org/10.2514/2.1622
  32. Shimpi, R.P., Patel, H.G. and Arya, H. (2007), "New first order shear deformation plate theories", J. Appl. Mech., 74, 523-533. https://doi.org/10.1115/1.2423036
  33. Shimpi, R.P., Shetty, R.A. and Guha, A. (2016), "A simple single variable shear deformation theory for a rectangular beam", J. Mech. Eng. Sci., 231(24), 4576-4591.
  34. Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
  35. Tuma, J.J. and Cheng, F.Y. (1983), Theory and Problems of Dynamic Structural Analysis, Schaum's Outline Series, McGRAW-HILL, INC.
  36. Wu, J.J. (2008), "Transverse and longitudinal vibrations of a frame structure due to a moving trolley and the hoisted object using moving finite element", Int. J. Mech. Sci., 50, 613-625. https://doi.org/10.1016/j.ijmecsci.2008.02.001