References
- Aimin, X. and Shayan A. (2016), "Relationship between reinforcing bar corrosion and concrete cracking", ACI Mater. J., 113(1), 3-12.
- Aveldano, R.R. and Ortega, N.F. (2013), "Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement", Constr. Build. Mater., 38, 822-828. https://doi.org/10.1016/j.conbuildmat.2012.09.039
- Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2006), "Model for cover cracking due to rebar corrosion in RC structures", Eng. Struct., 28(8), 1093-1109. https://doi.org/10.1016/j.engstruct.2005.11.014
- Cabrera, O.A., Ortega, N.F., Schierloh, M.I. and Traversa, L.P. (2012), "Influencia del curado sobre la evolucion de la corrosion en vigas de hormigon armado con diferentes agregados finos", Revista de la Asociacion Latinoamericana de Control de Calidad, Patologia y Recuperacion de la Construccion, 2(2), 74-85.
- Calavera Ruiz, J. (2008), Proyecto y calculo de estructuras de hormigon, Vol. 1, Second edition, Intemac Ediciones, Madrid.
- Castaldo, P., Palazzo, B. and Mariniello, A. (2017), "Effects of the axial force eccentricity on the time-variant structural reliability of ageing rc cross-sections subjected to chloride-induced corrosion", Eng. Struct., 130, 261-274. https://doi.org/10.1016/j.engstruct.2016.10.053
- Chung, L., Cho, S.H., Kim, J.H.J. and Yi, S.T. (2004), "Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars", Eng. Struct., 26(8), 1013-1026. https://doi.org/10.1016/j.engstruct.2004.01.008
- Comision Permanente del Hormigon (1998), Instruccion de Hormigon Estructural (EHE), Ministerio de Fomento.
- Comite Europeo de Normalizacion (1993), Eurocodigo 2: Proyecto de estructuras de hormigon, AENOR, Madrid, parte 1-1, 94-96, (1994), y parte 1-3, 24-26.
- Euro-International Committee of Concrete-International Federation of Prestressed, Code Model CEB-FIP 1990 for structural concrete (1995), Engineers College of Roads, Channels and Ports, Spanish Edition, Concrete Spanish Group-CEB and Prestressed Spanish Technical Association.
- Gerengi, H., Kocak, Y., Jazdzewska, A. and Kurtay, M. (2017), "Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides", Comput. Concrete, 19(2), 161-169. https://doi.org/10.12989/cac.2017.19.2.161
- Hosseini, S.A., Shabakhty, N. and Mahini, S.S. (2015), "Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures", Struct. Eng. Mech., 56(2), 257-273. https://doi.org/10.12989/sem.2015.56.2.257
- Jin, L., Zhang, R., Du, X. and Li, Y. (2015), "Investigation on the cracking behavior of concrete cover induced by corner located rebar corrosion", Eng. Fail. Anal., 52, 129-143, https://doi.org/10.1016/j.engfailanal.2015.03.019
- Laboratoire Central des Points et Chaussees (1999), Determination of the conventional length of anchorage for bond, LCPC, 45-56.
-
Leonhart, F. (1988), Estructuras de hormigon armado, Tomo V: Hormigonpretensado, (
$2^{\circ}$ edicion en espanol) Ed. Ateneo, Buenos Aires. - Liu, M., Cheng, X., Li, X., Hu, J., Pan, Y. and Jin, Z. (2016), "Indoor accelerated corrosion test and marine field test of corrosion-resistant low-alloy steel rebars", Case Stud. Constr. Mater., 5, 87-99. https://doi.org/10.1016/j.cscm.2016.09.005
- Lollini, F., Redaelli, E. and Bertolini, L. (2016), "Corrosion assessment of reinforced concrete elements of Torre Velasca in Milan", Case Stud. Constr. Mater., 4, 55-61. https://doi.org/10.1016/j.cscm.2015.12.005
- Meneses, R.S., Moro, J.M., Aveldano, R.R. and Ortega, N.F. (2016), "Influencia del espesor del recubrimiento de elementos de hormigon armado expuestos a procesos de corrosion y sometidos a cargas externas", Revista de la Asociacion Latinoamericana de Control de Calidad, Patologia y Recuperacion de la Construccion, 6(2), 46-61.
- Ortega, N.F., Alonso, M.C., Andrade, M.C. and Lopez, C.; "Analisis de la Fisuracion Ocasionada por la Corrosion de las Armaduras Activas de Elementos Pretensados", Coloquia 2001, Madrid, 10.
-
Ortega, N.F., Lopez, C., Alonso, M.C. and Andrade, M.C.; "Mecanica estructural de elementos de hormigon, con armaduras activas adherentes sometidas a la corrosion",
$14^{\circ}$ Reunion de la Asociacion Argentina de Tecnologia del Hormigon, Olavarria, Argentina, 7. - Ortega, N.F., Rivas, E.I., Aveldano, R.R. and Peralta, M.H. (2011), "Beams affected by corrosion. influence of reinforcement placement in the cracking", Struct. Eng. Mech., 37(2), 72-81.
- Sajedi, S. and Huang, Q. (2015), "Probabilistic prediction model for average bond strength at steel-concrete interface considering corrosion effect", Eng. Struct., 99, 120-131. https://doi.org/10.1016/j.engstruct.2015.04.036
- Soylev, T.A. and Francois, R. (2003), "Quality of steel-concrete interface and corrosion of reinforcing steel", Cement Concrete Res., 33(9), 1407-1415. https://doi.org/10.1016/S0008-8846(03)00087-5
- UNE 7-436-82, Norma sobre el Metodo de Ensayo para la Determinacion de las caracteristicas de adherencia de las armaduras de pretensado, Tomo 4 Siderurgia, AENOR, Madrid.
- Yalciner, H., Eren, O. and Sensoy, S. (2012), "An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level", Cement Concrete Res., 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003
- Yuksel, I. (2015), "Rebar corrosion effects on structural behavior of buildings", Struct. Eng. Mech., 54(6), 1111-1133. https://doi.org/10.12989/sem.2015.54.6.1111
- Zhao, Y., Dong, J., Wu, Y. and Jin, W. (2016), "Corrosion-induced concrete cracking model considering corrosion product-filled paste at the concrete/steel interface", Constr. Build. Mater., 116, 273-280. https://doi.org/10.1016/j.conbuildmat.2016.04.097
Cited by
- Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon vol.77, pp.1, 2018, https://doi.org/10.12989/sem.2021.77.1.001
- Flexural performance test of a prestressed concrete beam with plastic bellows vol.79, pp.2, 2021, https://doi.org/10.12989/sem.2021.79.2.223