DOI QR코드

DOI QR Code

Optimal monitoring instruments selection using innovative decision support system framework

  • Masoumi, Isa (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) ;
  • Ahangari, Kaveh (Department of Mining Engineering, Science and Research Branch, Islamic Azad University) ;
  • Noorzad, Ali (Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University)
  • 투고 : 2017.05.20
  • 심사 : 2017.11.28
  • 발행 : 2018.01.25

초록

Structural monitoring is the most important part of the construction and operation of the embankment dams. Appropriate instruments selection for dams is vital, as inappropriate selection causes irreparable loss in critical condition. Due to the lack of a systematic approach to determine adequate instruments, a framework based on three comparable Multi-Attribute Decision Making (MADM) methods, which are VIKOR, technique of order preference by similarity to ideal solution (TOPSIS) and Preference ranking organization method for enrichment evaluation (PROMETHEE), has been developed. MADM techniques have been widely used for optimizing priorities and determination of the most suitable alternatives. However, the results of the different methods of MADM have indicated inconsistency in ranking alternatives due to closeness of judgements from decision makers. In this study, 9 criteria and 42 geotechnical instruments have been applied. A new method has been developed to determine the decision makers' importance weights and an aggregation method has been introduced to optimally select the most suitable instruments. Consequently, the outcomes of the aggregation ranking correlate about 94% with TOPSIS and VIKOR, and 83% with PROMETHEE methods' results providing remarkably appropriate prioritisation of instruments for embankment dams.

키워드

참고문헌

  1. Andersen, G., Chouinard, L., Bouvier, C. and Back, W. (1999), "Ranking procedure on maintenance tasks for moitoring of embankment dams", J. Geotech. Geoenviron. Eng., 125(4), 247-259. Doi:10.1061/(ASCE)1090-0241(1999)125:4(247).
  2. Balali, V., Zahraie, B. and Roozbahani, A. (2014). "Integration of ELECTRE III and PROMETHEE II decision-making methods with an interval approach: application in selection of appropriate structural systems", J. Comput. Civ. Eng., 28(2), 297-314. Doi:10.1061/(ASCE)CP.1943-5487.0000254.
  3. Barai, S. and Pandey, P.C. (2004), "Knowledge based expert system approach to instrumentation selection (INSEL)", Transport, 19(4), 171-176. Doi:10.1080/16484142.2004.9637971.
  4. Bartholomew, C.L., Murray, C.B. and Goins, D.L. (1987), Embankment Dam Instrumentation Manual, U.S.Beurau of Reclamation.
  5. Bassett, R. (2012), A guide to field instrumentation in geotechnics, Great Britain: Spon press.
  6. Behzadian, M., Kazemzadeh, R.B., Albadvi, A. and Aghdasi, M. (2010), "PROMETHEE: A comprehensive literature review on methodologies and applications", Eur. J. Operational Res., 200(1), 198-215. https://doi.org/10.1016/j.ejor.2009.01.021
  7. Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M. and Ignatius, I. (2012), "A state-of the-art survey of TOPSIS applications", Exp. Syst. Appl., 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  8. Brans, J.P, and Smet, Y.D. (2016). PROMETHEE Methods. In S. E. Greco, Multiple Criteria Decision Analysis State of the Art Surveys (Second ed., 187-220). New York: Springer.
  9. Brans, J.P. and Vincke, P.h. (1985). "A preference ranking organization method (The PROMETHEE method for multiple criteria decision-making)", Management Sci., 31(6), 641-656.
  10. Brown, C.B. and Elms, D.G. (2015), "Engineering decisions: Information, knowledge and understanding", Struct. Saf., 52, 66-77. https://doi.org/10.1016/j.strusafe.2014.09.001
  11. Bukenya, P.,Moyo, P., Beushausen, H. and Oosthuizen, C. (2014), "Health monitoring of concrete dams: a literature review", J. Civil Struct. Health Monit., 4(4), 235-244. https://doi.org/10.1007/s13349-014-0079-2
  12. Cristobal, J.R.S. (2012), "Contractor selection using multicriteria decision-making methods", J. Constr. Eng. Manage., 138(6), 751-758. Doi:10.1061/(ASCE)CO.1943-7862.0000488.
  13. Cristobal, J.R.S. (2013), "Critical path definition using multicriteria decision making: PROMETHEE method", J. Manage. Eng., 29(2), 158-163. Doi:10.1061/(ASCE)ME.1943-5479.0000135.
  14. Curt, C. and Talon, A. (2013), "Assessment and control of the quality of data used during dam reviews by using expert knowledge and the ELECTRE TRI method", J. Comput. Civ. Eng., 27(1), 10-17. Doi:10.1061/(ASCE)CP.1943-5487.0000187.
  15. Dunnicliff, J. (1993), Geotechnical Instrumentation for Monitoring Field Performance. Wiley - Interscience Publication, John Wiley & Sons.
  16. Eberhardt, E. and Stead, D. (2011), Geotechnical Instrumentation. In P. DARLING, SME Mining Engineering Handbook 3rd Ed., (551-571). Society for Mining, Metallurgy, and Exploration, Inc.
  17. FERC. (1994), Instrumentation and Monitoring. In Engineering Guidelines for the Evaluation of Hydropower Projects. Washington DC: Federal Energy Regulatory Commission, Office of Hydropower Licensing.
  18. Fu, G. (2008), "A fuzzy optimization method for multicriteria decision making: An application to reservoir flood control operation", Exp. Syst. Appl., 34(1), 145-149. https://doi.org/10.1016/j.eswa.2006.08.021
  19. Goumas, M. and Lygero, V. (2000), "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects", Eur. J. Oper. Res., 123, 606-613. https://doi.org/10.1016/S0377-2217(99)00093-4
  20. Gul, M., Celik, E., Aydin, N., Gumus, A.B. and Guneri, A.F. (2016), "A state of the art literature review of VIKOR and its fuzzy extensions on applications", Appl. Soft Comput., 46, 60-89. https://doi.org/10.1016/j.asoc.2016.04.040
  21. Gulgec, N.S., Ergan, S., Akinci, B., and Kelly, C.J. (2016). "Integrated Information Repository for Risk Assessment of Embankment Dams: Requirements Identification for Evaluating the Risk of Internal Erosion". J. Comput. Civ. Eng., 30(3). Doi:10.1061/(ASCE)CP.1943-5487.0000509.
  22. Hodgett, R.E. (2016), "Comparison of multi-criteria decisionmaking methods for equipment selection", Int. J. Adv. Manufact. Technol., 85(5), 1145-1157. https://doi.org/10.1007/s00170-015-7993-2
  23. Jing, S., Niu, Z. and Chang, P.C. (2015), "The application of VIKOR for the tool selection in lean management", J. Intell. Manuf., 1-12. Doi:10.1007/s10845-015-1152-3
  24. Kong, S.K. (2003), Application of Instrumentation System for Safety Control in Basement Construction Works. BCA Seminar - Avoiding Failures in Excavation Works. Singapore: MAA GROUP.
  25. Kurniati, E., Sutanhaji, A.T. and Anggraini, O.A. (2013), "Land acquisition and resettlement action plan (LARAP) of dam project using analytical hierarchical process (AHP): A case study in Mujur Dam, Lombok Tengah District-West Nusa Tenggara, Indonesia", Procedia Environ. Sciences, 17, 418-423. https://doi.org/10.1016/j.proenv.2013.02.055
  26. Laufer, A. (1990), "Decision-making roles in project planning", J. Manage. Eng., 6(4), 416-430. Doi:10.1061/(ASCE)9742-597X(1990)6:4(416).
  27. Li, Q.M., Yuan, H.N. and Zhong, M.H. (2015), "Safety assessment of waste rock dump built on existing tailings ponds", J. Central South Univ., 22, 2707-2718. https://doi.org/10.1007/s11771-015-2801-6
  28. Machan, G. and Bennett, V.G. (2008), Use of Inclinometers for Geotechnical Instrumentation on Transportation Projects: State of practice. Washington, DC: Transportation Research Board.
  29. Masoumi, I. and Rashidinejad, F. (2011), "Preference ranking of post-mining land use through LIMA framework", Proceedings of the 9th International Conference on Clean Technologies for the Mining Industry. Santiago, Chile.
  30. Masoumi, I., Ahangari, K. and Noorzad, A. (2017), "Reliable monitoring of embankment dams with optimal selection of geotechnical instruments", Struct. Monit. Maint., 4(1), 85-105. Doi:10.12989/smm.2017.4.1.085.
  31. Masoumi, I., Naraghi, S., Rashinejad, F. and Masoumi, S. (2014), "Application of fuzzy multi-attribute decision-making to select and to rank the post-mining land-use", Environ. Earth Sciences, 72(1), 221-231. https://doi.org/10.1007/s12665-013-2948-0
  32. Mauriya, V.K. (2010), "Geotechnical instrumentation in earth and rock-fill dams", Proceedings of the Indian Geotechnical Conference, (1027-1030). Mumbai: GEOtrendz.
  33. Milligan, V. (2003), "Some uncertainties in embankment dam engineering", J. Geotech. Geoenviron. Eng., 129(9), 785-797. Doi:10.1061/(ASCE)1090-0241(2003)129:9(785).
  34. Minatour, Y., Khazaei, J. and Ataei, M. (2013), "Earth dam site selection using the analytic hierarchy process (AHP): a case study in the west of Iran", Arabian J. Geosciences, 6(9), 3417-3426. https://doi.org/10.1007/s12517-012-0602-x
  35. Naterop, D. (2002), "Instrumentation of geotechnical structures and new technologies of information new developments in instrumentation and data management", Proceedings of the 8th Portuguese National Congress on Geotechnical Engineering, Lissabon.
  36. Negro, Jr. A., Karlsrud, K., Srithar, S., Ervin, M.C. and Voster, E. (2009), "Prediction, monitoring and evaluation of performance of geotechnical structures", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria.
  37. Novak, P., Moffat, A.I.B., Nalluri, C. and Narayanan, R. (2007), Hydraulic structures (4th Ed.), New York: Taylor & Francis.
  38. Opricovic, S. and Tzeng, G.H. (2007), "Extended VIKOR method in comparison with outranking methods", Eur. J. Oper.Res., 178(2), 514-529. https://doi.org/10.1016/j.ejor.2006.01.020
  39. Patjawit, A. and Chinnarasri, C. (2014), "Simplified evaluation of embankment dam health due to ground vibration using dam health index (DHI) approach", J. Civil Struct. Health Monit., 4(1), 17-25. https://doi.org/10.1007/s13349-013-0049-0
  40. Pehlivan, H. and Bayata, H.F. (2016), "Usability of inclinometers as a complementary measurement tool in structural monitoring", Struct. Eng. Mech., 58(6), 1077-1085. https://doi.org/10.12989/sem.2016.58.6.1077
  41. Saaty, T.L. (1990), The Analytic Hierarchy Process, McGraw Hill. New York.
  42. Shahdany, S.M.H. and Roozbahani, A. (2016), "Selecting an appropriate operational method for main irrigation canals within multicriteria decision-making methods", J. Irrig. Drain Eng., 142(4). Doi:10.1061/(ASCE)IR.1943-4774.0000996.
  43. Shrive, P.L., Brown, T.G. and Shrive, N.G. (2009), "Practicalities of structural health monitoring", Smart Struct. Syst., 5(4), 357-367. doi:10.12989/sss.2009.5.4.357.
  44. Soltanmohammadi, H., Osanloo, M. and Aghajani, A. (2009), "Deriving preference order of post-mining land-uses through MLSA framework: application of an outranking technique", Environ. Geology, 58(4), 877-888. https://doi.org/10.1007/s00254-008-1563-y
  45. Taal, A., Makkes, M.X., Kaat, M. and Grosso, P. (2016), "A multiple attribute relative quality measure based on the harmonic and arithmetic mean", Oper. Res., Doi:10.1007/s12351-016-0282-5.
  46. Tansel Ic, Y. (2016), "Development of a new multi-criteria optimization method for engineering design problems", Res. Eng. Des., 27(4), 413-436. https://doi.org/10.1007/s00163-016-0225-4
  47. Teng, J., Lu, W., Wen, R. and Zhang, T. (2015), "Instrumentation on structural health monitoring systems to real world structures", Smart Struct. Syst., 15(1), 151-167. https://doi.org/10.12989/sss.2015.15.1.151
  48. Tzeng, G.H. and Huang, J.J. (2011), Multiple Attribute Decision Making: Methods and Applications. Boca Raton, FL: CRC Press.
  49. USACE. (1995), Instrumentation of Embankment Dams and Levees.Washington DC: U.S. Army Corps of Engineers.
  50. Wierman, M.J. (1997), "Central values of fuzzy numbers-defuzzification", Inform. Sciences, 100(1-4), 207-215. https://doi.org/10.1016/S0020-0255(96)00278-2
  51. Yu, P.L. (1973), "A class of solutions for group decision problems", Management Science, 936-946. Doi:10.1287/mnsc.19.8.936.
  52. Zeleny, M. (1982), Multiple Criteria Decision Making, New York: McGraw-Hill.

피인용 문헌

  1. Integrated fuzzy decision approach for reliability improvement of dam instrumentation and monitoring vol.3, pp.2, 2018, https://doi.org/10.1080/24705314.2018.1461546
  2. Optimization of tailings disposal method using fuzzy analytic hierarchy process vol.19, pp.5, 2019, https://doi.org/10.2166/ws.2019.028
  3. APPLICATION OF MULTIPLE CRITERIA DECISION MAKING METHODS IN CONSTRUCTION: A SYSTEMATIC LITERATURE REVIEW vol.27, pp.6, 2018, https://doi.org/10.3846/jcem.2021.15260