DOI QR코드

DOI QR Code

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar (Smart structures Laboratory, University Centre of Ain Temouchent) ;
  • Amara, Khaled (Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes) ;
  • Bouazza, Mokhtar (Laboratory of Materials and Hydrology (LMH), University of Sidi Bel Abbes) ;
  • Bourada, Fouad (Smart structures Laboratory, University Centre of Ain Temouchent)
  • Received : 2017.03.22
  • Accepted : 2017.12.02
  • Published : 2018.01.25

Abstract

In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Keywords

References

  1. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites", Smart Mater. Struct. 10, 867-877. https://doi.org/10.1088/0964-1726/10/5/303
  2. Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int. J. Solids Struct., 37, 13-27. https://doi.org/10.1016/S0020-7683(99)00074-8
  3. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
  4. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  5. Avellaneda, M., Harshe, G. (1994),"Magnetoelectric effect in piezoelectric/magnetostrictive multilayer (2-2) composites", J. Intel. Mat. Syst. Str., 5, 501-513. https://doi.org/10.1177/1045389X9400500406
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  8. Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomag-netic phases", Phys. Rev. B, 51, 16424-16427. https://doi.org/10.1103/PhysRevB.51.16424
  9. Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates", J. Appl. Mech.-T ASME, 51(1), 195-198. https://doi.org/10.1115/1.3167569
  10. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  11. Bourada, F., Amara, Kh. and Tounsi, A. (2016),"Buckling analysis of isotropic and orthotropic platesusing a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  12. Dahsin, L. and Xiaoyu, L. (1996), "An overall view of laminate theories based on displacement hypothesis", J. Compos. Mater., 30(14), 1539-1561. https://doi.org/10.1177/002199839603001402
  13. Dutta, G., Panda, S.K., Mahapatra, T.R., Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., DOI: 10.1007/s40819-016-0256-6 , Volume 3, Issue 3, pp 2573-2592.
  14. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5 unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  15. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi- 3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  16. Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40(24), 4477-4499. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4477::AID-NME229>3.0.CO;2-3
  17. Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher-order theory for un symmetrically laminated composite plates", Compos. Struct., 9(3), 215-264. https://doi.org/10.1016/0263-8223(88)90015-3
  18. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  19. Katariya P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), DOI: 10.1108/AEAT-11-2013-0202.
  20. Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  21. Li, J.Y. and Dunn, M.L. (1998), "Micromechanics of magnetoelectro-elastic composite materials: average fields and effective behavior", J. Intel. Mat. Syst. Str., 9, 404-416. https://doi.org/10.1177/1045389X9800900602
  22. Li, Y.S. (2014), "Buckling analysis of magnetoelectroelastic plate resting on Pasternak elastic foundation", Mech. Res. Commun., 56(14), 104-114. https://doi.org/10.1016/j.mechrescom.2013.12.007
  23. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  24. Mallikarjuna, M. and Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N
  25. Mohan, P.R., Naganarayana, B.P. and Prathap, G. (1994), "Consistent and variationally correct finite elements for higherorder laminated plate theory", Compos. Struct., 29(4), 445-456. https://doi.org/10.1016/0263-8223(94)90113-9
  26. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
  27. Noor, A.K. and Burton, W.S. (1989a), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), 1-13. https://doi.org/10.1115/1.3152418
  28. Noor, A.K. and Burton, W.S. (1989b), "Stress and free vibration analysis of multilayer composite plates", Compos. Struct., 11, 183-204. https://doi.org/10.1016/0263-8223(89)90058-5
  29. Panda S.K. and Katariya P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Comput. Math., 1(3) 475-490. https://doi.org/10.1007/s40819-015-0035-9
  30. Panda, S.K. and Singh, B.N. (2009), "Thermal post-buckling behaviour of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91(3), 366-384. https://doi.org/10.1016/j.compstruct.2009.06.004
  31. Panda, S.K. and Singh, B.N. (2010), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech. Mater. Des., 6(2), 175-188. https://doi.org/10.1007/s10999-010-9127-1
  32. Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of laminated composite spherical shell panel embedded with SMA fibres using nonlinear FEM", Proc. IMechE Part C: J. Mech. Eng. Sci., 224(4), 757-769.
  33. Panda, S.K. and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47, (4), 378-386. https://doi.org/10.1016/j.finel.2010.12.008
  34. Panda, S.K. and Singh, B.N. (2013), "Thermal post-buckling analysis of laminated composite shell panel using NFEM", Mech. Based Des. Struct., 41(4), 468-488. https://doi.org/10.1080/15397734.2013.797330
  35. Panda, S.K. and Singh, B.N. (2013a), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007
  36. Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibres subjected to thermal environment", Mech. Adv. Mater. Struct., 20(10), 842-853. https://doi.org/10.1080/15376494.2012.677097
  37. Panda, S.K. and Singh, B.N. (2013c), "Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel embedded with SMA fibres", Nonlinear Dynam., 74(1-2), 395-418 https://doi.org/10.1007/s11071-013-0978-5
  38. Priya, S., Islam, R., Dong, S.X. and Vehland, D. (2007), "Recent advancements in magnetoelectric particular and laminate composites", J. Electroceram., 19, 149-166. https://doi.org/10.1007/s10832-007-9042-5
  39. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  40. Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", Shock Vib. Dig., 22(7), 3-17. https://doi.org/10.1177/058310249002200703
  41. Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35. https://doi.org/10.1016/0263-8223(93)90147-I
  42. Reddy, J.N. (2004), "Mechanics of laminated composite plates and shels", Theory and Analysis, CRC Press LLC, USA.
  43. Ren, J.G. (1986), "A new theory of laminated plate", Compos. Sci. Technol., 26(3), 225-239. https://doi.org/10.1016/0266-3538(86)90087-4
  44. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel. Compos. Struct., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  45. Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D.L.A. (2011), "Free vibration analysis of solar functionally graded plate with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195-2209. https://doi.org/10.1007/s12206-011-0610-x
  46. Shen, H.S. (2001), "Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators", Compos. Sci. Technol., 61(13), 1931-1943. https://doi.org/10.1016/S0266-3538(01)00099-9
  47. Singh , V.K., Mahapatra T.R. and Panda, S.K. (2016b), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech -A/Solids, D.O.I. 10.1016/j.euromechsol. 2016.08.006.
  48. Singh, V.K. and Panda, S.K (2016), "Free vibration analysis of laminated cylindrical shell panel embedded with PZT", Proceedings of the 12th Int. Conf. on Vibration Problem (ICOVP), Procedia Engineering.
  49. Singh, V.K. and Panda, S.K. (2015a), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853
  50. Singh, V.K. and Panda, S.K. (2015b), "Large amplitude vibration behaviour of doubly curved composite panels embedded with piezoelectric layers", J. Vib. Control, Doi:10.1177/1077546315609988.
  51. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020
  52. Suman S.D., Hirwani, C.K., Chaturbedy, A. and Panda, S.K. (2016), "Effect of magnetostrictive material layer on the stress and deformation behavior of laminated composite structure", IOP Conf. Ser.: Mater. Sci. Eng., 178 012031.
  53. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", J. Mech. A/Solids, 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  54. Varelis, D. and Saravanos, D.A. (2004), "Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates", Int. J. Solids Struct., 41(5-6), 1519-1538. https://doi.org/10.1016/j.ijsolstr.2003.09.034
  55. Viswanathan, K.K., Javed, S. and Abdul Aziz, Z. (2013), "Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory", Struct. Eng. Mech., 45(2), 259-275. https://doi.org/10.12989/sem.2013.45.2.259
  56. Wu, T.L. and Huang, J.H. (2000), "Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solids Struct., 37, 2981-3009. https://doi.org/10.1016/S0020-7683(99)00116-X
  57. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022

Cited by

  1. Elastic buckling strength for steel plates symmetrically strengthened with glass fiber reinforced polymer plates vol.47, pp.3, 2018, https://doi.org/10.1139/cjce-2018-0476