DOI QR코드

DOI QR Code

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Universite Dr Tahar Moulay, Faculte de Technologie, Departement de Genie Civil et Hydraulique) ;
  • Benzair, Abdelnour (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes)
  • 투고 : 2017.08.08
  • 심사 : 2017.12.12
  • 발행 : 2018.01.25

초록

In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

키워드

참고문헌

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Ahouel, M., Houari, M.S.A., AddaBedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  4. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  5. AitYahia, S., AitAtmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  6. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos.: Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
  7. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  8. Ansari, R., Hosseini, K., Darvizeh, A. and Daneshian, B. (2013), "A sixth-order compact finite difference method for nonclassical vibration analysis of nanobeams including surface stress effects", Appl. Math. Comput., 219, 4977-4991.
  9. Attia, A., Tounsi, A., AddaBedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  10. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  11. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  12. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347 - 1368. https://doi.org/10.12989/scs.2016.21.6.1347
  13. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  14. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  15. Belkorissat, I., Houari, M.S.A., Tounsi, A., AddaBedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  16. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017b), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  17. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017a), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695 -702. https://doi.org/10.12989/SEM.2017.62.6.695
  18. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  19. Benachour, A, Tahar, H.D., Atmane, H.A., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos.: Part B; 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  20. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/EAS.2017.13.3.255
  21. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  22. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888
  23. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  24. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  25. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  26. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  27. Boukhari, A., AitAtmane, H., Tounsi, A., AddaBedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  28. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  29. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "Anew simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  30. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  31. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  32. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Phys. Rev. Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505
  33. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  34. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  35. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  36. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocalnanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. https://doi.org/10.12989/anr.2016.4.1.051
  37. Gao, X.L. and Zhang, G.Y. (2015), "A microstructure- and surface energy-dependent third-order shear deformation beam model", ZAMP, 66(4), 1871-1894.
  38. Gibbs, J.W. (1906), "The scientific papers of J. Willard Gibbs", Dover Publications, Inc, New York.
  39. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  40. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  41. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four variable refined plate theory", Appl. Math. Mech., 32(7), 925-942. https://doi.org/10.1007/s10483-011-1470-9
  42. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  43. Hanifi Hachemi Amar, L., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/SEM.2017.64.5.527
  44. He, J. and Lilley, C.M. (2008), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802. https://doi.org/10.1021/nl0733233
  45. He, J., and Lilley, C. M., (2008), "Surface Stress Effect on Bending Resonance of Nanowires With Different Boundary Conditions," Appl. Phys. Lett., 93,263108. https://doi.org/10.1063/1.3050108
  46. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and AddaBedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  47. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257 - 276. https://doi.org/10.12989/scs.2016.22.2.257
  48. Kar, V.R. and Panda, S.K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
  49. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/SCS.2017.25.3.361
  50. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  51. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  52. Liu, C., Rajapakse, R.K.N.D. and Phani, A.S. (2011), "Finite element modelling of beams with surface energy effects", ASME J. Appl. Mech., 78, 031014, see also Erratum, (2012), ASME J. Appl. Mech., 79, 017001.
  53. Liu, L. and Zhang, Y. (2004), "Multi-wall carbon nanotube as a new infrared detected material", Sensors Actuat., 116, 394-397. https://doi.org/10.1016/j.sna.2004.05.016
  54. Maede, R.D. and Vanderbilt, D. (1989), "Origins of stress on elemental and chemisorbed semiconductor surfaces", Phys. Rev. Lett., 63(13), 1404-1407. https://doi.org/10.1103/PhysRevLett.63.1404
  55. Mahi, A., AddaBedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  56. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  57. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301
  58. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  59. Needs, R.J. (1987), "Calculations of the surface stress tensor at aluminum (111) and (110) surfaces", Phys. Rev. Lett., 58(1),. 53-56. https://doi.org/10.1103/PhysRevLett.58.53
  60. Ould Youcef, D., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano Res., 3(3), 177-191. https://doi.org/10.12989/anr.2015.3.4.177
  61. Qin, C., Shen, J., Hu, Y. and Ye, M. (2009), "Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magneticnanocomposites", Compos. Sci. Technol., 69, 427-431. https://doi.org/10.1016/j.compscitech.2008.11.011
  62. Reddy, J.N. (2002), "Energy principles and variational methods in applied mechanics", Wiley, NewYork.
  63. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  64. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  65. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/SEM.2017.64.6.737
  66. Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic Fcc crystal surfaces", Phys. Rev. B, 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104
  67. Song, F., Huang, G.L., Park, H.S. and Liu, X.N. (2011), "A continuum model for the mechanical behavior of nanowires including surface and surface induced initial stresses", Int. J. Solids Struct., 48, 2154-2163. https://doi.org/10.1016/j.ijsolstr.2011.03.021
  68. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904
  69. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  70. Wang, G.F. and Feng, X.Q. (2009a), "Surface effects on buckling of nanowiresunder uniaxial compression", Appl. Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505
  71. Wang, G.F. and Feng, X.Q. (2009b), "Timoshenko beam model for bucklingand vibration of nanowires with surface effects," J. Phys. D: Appl. Phys., 42,155411. https://doi.org/10.1088/0022-3727/42/15/155411
  72. Wang, G.F. and Feng, X.Q. (2007), "Effects of Surface elasticity and residualsurface tension on the natural frequency of microbeams," Appl. Phys. Lett., 90, 231904. https://doi.org/10.1063/1.2746950
  73. Wong, E.W., Sheehan, P.E. and Lieber, C.M. (1997), "Nanobeam mechanics: elasticity,strength, and toughness of nanorods and nanotubes", Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  74. Xu, F., Qin, Q., Mishra, A., Gu, Y. and Zhu, Y. (2010), "Mechanical properties of ZnO nanowires under different loading modes", Nano Res., 3, 271-280. https://doi.org/10.1007/s12274-010-1030-4
  75. Yan, X.B., Chen, X.J., Tay, B.K. and Khor, K.A. (2007), "Transparent and flexible glucose via layer-by-layerassembly of multi-wall carbon nanotubes and glucoseoxidase", Electrochem. Commun., 9, 1269-1275. https://doi.org/10.1016/j.elecom.2006.12.022
  76. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., (In press).
  77. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  78. Zhang, W.D., Wen, Y., Liu, S.M., Tjiu, W.C., Xu, G.Q. and Gan. L.M. (2002), "Synthesis of vertically alignedcarbon nanotubes on metal deposited quartz plates", Carbon, 40, 1981-1989. https://doi.org/10.1016/S0008-6223(02)00052-0
  79. Zhao, C., Song, Y., Ren, J. and Qu, X. (2009), "A DNA nanomachine induced by single-walled carbon nanotubes on gold surface", Biomaterials, 30, 1739-1745. https://doi.org/10.1016/j.biomaterials.2008.12.034
  80. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153.
  81. Zidi, M., Tounsi, A., Houari M.S.A., AddaBedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  2. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2018, https://doi.org/10.12989/sem.2019.70.4.407
  3. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
  4. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
  5. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  6. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2018, https://doi.org/10.12989/was.2019.29.6.371
  7. On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2018, https://doi.org/10.1088/1402-4896/ab43b6
  8. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
  9. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.183