References
- Abdeljaber, O., Avci, O., Kiranyaz, S. et al. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
- Abolbashari, M.H., Nazari, F. and Rad, J.S. (2014), "A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network", Struct. Eng. Mech., 51(2), 299-313. https://doi.org/10.12989/sem.2014.51.2.299
- Aharon, M., Elad, M. and Bruckstein, A. (2006), "K-svd: An algorithm for designing overcomplete dictionaries for sparse representation", IEEE T. Signal Pr., 54(11), 4311-4322 https://doi.org/10.1109/TSP.2006.881199
- Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Method. E., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7
- Aydin, K. and Kisi, O. (2015), "Damage detection in structural beam elements using hybrid neuro fuzzy systems", Smart Struct. Syst., 16(6), 1107-1132 https://doi.org/10.12989/sss.2015.16.6.1107
- Bandara R.P, Chan T.H. and Thambiratnam D.P. (2014), "Frequency response function based damage identification using principal component analysis and pattern recognition technique", Eng. Struct., 66(1), 116-128. https://doi.org/10.1016/j.engstruct.2014.01.044
- Cai, T.T. and Wang, L. (2011), "Orthogonal matching pursuit for sparse signal recovery with noise", IEEE T. Inform. Theory, 57(7), 4680-4688 https://doi.org/10.1109/TIT.2011.2146090
- Curadelli, R.O., Riera, J.D., Ambrosini D., et al. (2008), "Damage detection by means of structural damping identification", Eng. Struct., 30(12), 3497-3504. https://doi.org/10.1016/j.engstruct.2008.05.024
- Dackermann U., Li J. and Samali B. (2010), "Quantification of notch-type damage in a two-storey framed structure utilising frequency response functions and artificial neural networks", Proceeding of the 5th World Conference on Structural Control and Monitoring.
- Dackermann, U., Lim J. and Samali, B. (2013), "Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks", J. Sound Vib., 332(16), 3636-3653. https://doi.org/10.1016/j.jsv.2013.02.018
- Dackermann, U., Li, J., Samali, B., et al. (2011), "Damage severity assessment of timber bridges using frequency response functions (FRFs) and artificial neural networks (ANNs) ", Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS 11). Laboratorio Nacional de Engenharia Civil.
- Dilenaa, M., Limongellib, M.P. and Morassi, A. (2015), "Damage localization in bridges via the FRF interpolation method", Mech. Syst. Signal Pr., 52-53, 162-180. https://doi.org/10.1016/j.ymssp.2014.08.014
- Donoho, D.L. (2006), "Compressed sensing", IEEE T. Inform. Theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006.871582
- Egba, E.I. (2012), "Detection of structural damage in building using changes in modal dampong mechanism", Int. J. Eng. Management Sci., 3(3), 250.
- Esfandiari, A., Bakhtiari-Nejad, F., Rahai, A., et al. (2009), "Structural model updating using frequency response function and quasi-linear sensitively equation", J. Sound Vib., 326(3-5), 557-573. https://doi.org/10.1016/j.jsv.2009.07.001
- Gentile, M.C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Buildi. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007
- Hakim, S.J.S. and Abdul Razak, H. (2013), "Adaptive neuro fuzzy inference system (anfis) and artificial neural networks (anns) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779
- Hansen, L.K. and Salamon, P. (1990), "Neural network ensembles", Pattern Anal. Machine Intelligence, IEEE T., 12(10), 993-1001. https://doi.org/10.1109/34.58871
- He, H., Yan, W. and Zhang, A. (2013), "Theoretical and experimental study on damage detection for beam string structure", Smart Struct. Syst., 12(3), 327-344. https://doi.org/10.12989/sss.2013.12.3_4.327
- Huang, J.Z., Huang, X.L. and Metaxas, D. (2008), Simultaneous image transformation and sparse representation recovery. Computer Vision and Pattern Recognition. Anchorage, AK IEEE
- Jiang, X. and Adeli, H. (2007), "Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings", Int. J. Numer. Meth. Eng., 71(5), 606-629. https://doi.org/10.1002/nme.1964
- Kang, F., Jun-Jie, L. and Qing, X. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl.Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050
- Kaveh, A., Vaez, S.R.H., Hosseini, P., et al. (2016), "Detection of damage in truss structures using simplified dolphin Echolocation algorithm based on modal data", Smart Struct. Syst., 18(5), 983-1004. https://doi.org/10.12989/sss.2016.18.5.983
- Khoshnoudian, F. and Esfandiari, A. (2011), "Structural damage diagnosis using modal data", Scientia Iranica, 18(4), 853-860. https://doi.org/10.1016/j.scient.2011.07.012
- Khoshnoudian, F., Talaei, S. and Fallahian, M. (2017), "Structural damage detection using FRF data, 2D-PCA, artificial neural networks and imperialist competitive algorithm simultaneously", Int. J. Struct. Stab. Dynam., 17(7), 1750073. https://doi.org/10.1142/S0219455417500730
- Kuwabara, M., Yoshitomi, S. and Takewaki, I. (2013), "A new approach to system identification and damage detection of high-rise buildings", Struct. Control Health Monit., 20(5), 703-727. https://doi.org/10.1002/stc.1486
- Lee, H., Battle, A., Raina, R., et al. (2007), Efficient sparse coding algorithms. NIPS, Kolkata
- Lee, U. and Shin, J. (2002), "A frequency response function-based structural damage identification method, Computers and Structures", Comput. Struct., 80(2), 117-132. https://doi.org/10.1016/S0045-7949(01)00170-5
- Li, J., Dackermann, U., Xu, Y.L., et al. (2011), "Damage identification in civil engineering structures utilising PCA-compressed residual frequency response functions and neural network ensembles", Struct. Control Health Monit., 18(2), 207-226. https://doi.org/10.1002/stc.369
- Liu H., Liu C. and Huang Y. (2011), "Adaptive feature extraction using sparse coding for machinery fault diagnosis", Mech. Syst. Signal Pr., 25(2), 558-574. https://doi.org/10.1016/j.ymssp.2010.07.019
- Maia, N.M.M., Silva, J.M.M., Almas, E.A.M., et al. (2003), "Damage detection in structures: from mode shape to frequency response function methods", Mech. Syst. Signal Pr., 17(3), 489-498. https://doi.org/10.1006/mssp.2002.1506
- Marwala, T. (2000), "Damage Identification Using Committee of Neural Networks", J. Eng. Mech., 126(1), 43-50. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(43)
- Marwala, T. and Hunt, H.E.M. (1999), "Fault identification using finite element models and neural networks", Mech. Syst. Signal Pr., 13(3), 475-490. https://doi.org/10.1006/mssp.1998.1218
- Mehrjoo, M., Khaji, N., Moharrami, H., et al. (2008), "Damage detection of truss bridge joints using artificial neural networks", Expert Syst. Appl., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008
- Ni Y.Q., Zhou, X.T. and Ko, J.M. (2006), "Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks", J. Sound Vib., 290(1), 242-263. https://doi.org/10.1016/j.jsv.2005.03.016
- Nozarian, M.M. and Esfandiari, A. (2009), "Structural damage identification using frequency response function", Mater. Forum, 33, 443-449.
- Opitz, D.W. and Shavlik, J.W. (1996), "Actively searching for an effective neural network ensemble",Connection Science, 8(3-4), 337-353. https://doi.org/10.1080/095400996116802
- Pearson, K. (1901), "On lines and planes of closest fit to systems of points in space", Philos. Mag., 2(11), 559-572. https://doi.org/10.1080/14786440109462720
- Perrone, M.P. and Cooper, L.N. (1993), When networks disagree: Ensemble method for neural networks, (Ed., R.J. Mammone), Artificial Neural Networks for Speech and Vision. Chapman & Hall, New York.
- Qiao, L., Esmaeily, A. and Melhem, H.G. (2009), "Structural damage detection using signal pattern-recognition", Key Eng.Mater., 400, 465-470.
- Qiao, L., Esmaeily, A. and Melhem, H.G. (2012), "Signal pattern recognition for damage diagnosis in structures", Comput. Aided Civil Infrastruct. Eng., 27(9), 699-710. https://doi.org/10.1111/j.1467-8667.2012.00766.x
- Roy, K. and Ray-Chaudhuri, S. (2013), "Fundamental mode shape and its derivatives in structural damage localization", J. Sound Vib., 332(21), 5584-5593. https://doi.org/10.1016/j.jsv.2013.05.003
- Rubinstein, R., Bruckstein, A. and Elad, M. (2010), "Dictionaries for sparse representation modeling", Proceedings of the IEEE, 98(6), 1045-1057 https://doi.org/10.1109/JPROC.2010.2040551
- Sampaio, R.P.C, Maia, N.M.M. and Silva, J.M.M. (1999), "Damage detection using the frequency-response-function curvature method", J. Sound Vib., 226(5), 1029-1042. https://doi.org/10.1006/jsvi.1999.2340
- Shadan, F., Khoshnoudian, F. and Esfandiari, A. (2015), "A frequency response-based structural damage identification using model updating method", Struct.Control Health Monit., DOI: 10.1002/stc.1768
- Shadan, F., Khoshnoudian, F., Inman, D.J., et al. (2016), "Experimental validation of a FRF-based model updating method", J. Vib. Control.
- Trendafilova, I. and Heylen, W. (2003), "Categorization and pattern recognition methods for damage localization from vibration measurements", Mech. Syst. Signal Pr., 17(4), 825-836. https://doi.org/10.1006/mssp.2002.1518
- Wang, Y. (2015), "Probabilistic-based damage identification based on error functions with an autofocusing feature", Smart Struct. Syst., 15(4), 1121-1137. https://doi.org/10.12989/sss.2015.15.4.1121
- Wang, Z., Chen, S., Lederman, G., et al. (2013), "Comparison of sparse representation and fourier discriminant methods: damage location classification in indirect lab-scale bridge structural health monitoring", Structures Congress, 436-446.
- Wright, J., Yang, A.Y., Ganesh, A., et al. (2009), "Robust face recognition via sparse representation", IEEE T. Pattern Anal. Machine Intell., 3(2), 210-227
- Wright, J., Yi, M., Mairal, J., et al. (2009), "Sparse representation for computer vision and pattern recognition", Proceedings of the IEEE, 98(6).
- Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390
- Zapico-Valle, Luis J. and Garcia-Dieguez M. (2014), "Dynamic modeling and identification of the Uniovi structure", Int. J. Simul. Multidiscip. Des. O., 5, 6.
- Zhou, Z., Wu, J. and Tang, W. (2002), "Ensembling neural networks: Many could be better than all", Artif. Intell., 137, 239-263. https://doi.org/10.1016/S0004-3702(02)00190-X
- Zolfaghari, M., Jourabloo, A., Gozlo, S., et al. (2014), "3D human pose estimation from image using couple sparse coding", Mach. Vision Appl., 25(6), 1489-1499. https://doi.org/10.1007/s00138-014-0613-6