DOI QR코드

DOI QR Code

Application of couple sparse coding ensemble on structural damage detection

  • Fallahian, Milad (Faculty of Civil Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Khoshnoudian, Faramarz (Faculty of Civil Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Talaei, Saeid (Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University)
  • 투고 : 2017.01.06
  • 심사 : 2017.11.30
  • 발행 : 2018.01.25

초록

A method is proposed to detect structural damages in the presence of damping using noisy data. This method uses Frequency Response Function (FRF) and Mode-Shapes as the input parameters for a system of Couple Sparse Coding (CSC) to study the healthy state of the structure. To obtain appropriate patterns of FRF for CSC training, Principal Component Analysis (PCA) technique is adopted to reduce the full-size FRF to overcome over-fitting and convergence problems in machine-learning training. To verify the proposed method, a numerical two-story frame structure is employed. A system of individual CSCs is trained with FRFs and mode-shapes, and then termed ensemble to detect the health condition of the structure. The results demonstrate that the proposed method is accurate in damage identification even in presence of up to 20% noisy data and 5% unconsidered damping ratio. Furthermore, it can be concluded that CSC ensemble is highly efficient to detect the location and the severity of damages in comparison to the individual CSC trained only with FRF data.

키워드

참고문헌

  1. Abdeljaber, O., Avci, O., Kiranyaz, S. et al. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043
  2. Abolbashari, M.H., Nazari, F. and Rad, J.S. (2014), "A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network", Struct. Eng. Mech., 51(2), 299-313. https://doi.org/10.12989/sem.2014.51.2.299
  3. Aharon, M., Elad, M. and Bruckstein, A. (2006), "K-svd: An algorithm for designing overcomplete dictionaries for sparse representation", IEEE T. Signal Pr., 54(11), 4311-4322 https://doi.org/10.1109/TSP.2006.881199
  4. Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Method. E., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7
  5. Aydin, K. and Kisi, O. (2015), "Damage detection in structural beam elements using hybrid neuro fuzzy systems", Smart Struct. Syst., 16(6), 1107-1132 https://doi.org/10.12989/sss.2015.16.6.1107
  6. Bandara R.P, Chan T.H. and Thambiratnam D.P. (2014), "Frequency response function based damage identification using principal component analysis and pattern recognition technique", Eng. Struct., 66(1), 116-128. https://doi.org/10.1016/j.engstruct.2014.01.044
  7. Cai, T.T. and Wang, L. (2011), "Orthogonal matching pursuit for sparse signal recovery with noise", IEEE T. Inform. Theory, 57(7), 4680-4688 https://doi.org/10.1109/TIT.2011.2146090
  8. Curadelli, R.O., Riera, J.D., Ambrosini D., et al. (2008), "Damage detection by means of structural damping identification", Eng. Struct., 30(12), 3497-3504. https://doi.org/10.1016/j.engstruct.2008.05.024
  9. Dackermann U., Li J. and Samali B. (2010), "Quantification of notch-type damage in a two-storey framed structure utilising frequency response functions and artificial neural networks", Proceeding of the 5th World Conference on Structural Control and Monitoring.
  10. Dackermann, U., Lim J. and Samali, B. (2013), "Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks", J. Sound Vib., 332(16), 3636-3653. https://doi.org/10.1016/j.jsv.2013.02.018
  11. Dackermann, U., Li, J., Samali, B., et al. (2011), "Damage severity assessment of timber bridges using frequency response functions (FRFs) and artificial neural networks (ANNs) ", Proceedings of the International Conference on Structural Health Assessment of Timber Structures (SHATIS 11). Laboratorio Nacional de Engenharia Civil.
  12. Dilenaa, M., Limongellib, M.P. and Morassi, A. (2015), "Damage localization in bridges via the FRF interpolation method", Mech. Syst. Signal Pr., 52-53, 162-180. https://doi.org/10.1016/j.ymssp.2014.08.014
  13. Donoho, D.L. (2006), "Compressed sensing", IEEE T. Inform. Theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006.871582
  14. Egba, E.I. (2012), "Detection of structural damage in building using changes in modal dampong mechanism", Int. J. Eng. Management Sci., 3(3), 250.
  15. Esfandiari, A., Bakhtiari-Nejad, F., Rahai, A., et al. (2009), "Structural model updating using frequency response function and quasi-linear sensitively equation", J. Sound Vib., 326(3-5), 557-573. https://doi.org/10.1016/j.jsv.2009.07.001
  16. Gentile, M.C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Buildi. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007
  17. Hakim, S.J.S. and Abdul Razak, H. (2013), "Adaptive neuro fuzzy inference system (anfis) and artificial neural networks (anns) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779
  18. Hansen, L.K. and Salamon, P. (1990), "Neural network ensembles", Pattern Anal. Machine Intelligence, IEEE T., 12(10), 993-1001. https://doi.org/10.1109/34.58871
  19. He, H., Yan, W. and Zhang, A. (2013), "Theoretical and experimental study on damage detection for beam string structure", Smart Struct. Syst., 12(3), 327-344. https://doi.org/10.12989/sss.2013.12.3_4.327
  20. Huang, J.Z., Huang, X.L. and Metaxas, D. (2008), Simultaneous image transformation and sparse representation recovery. Computer Vision and Pattern Recognition. Anchorage, AK IEEE
  21. Jiang, X. and Adeli, H. (2007), "Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings", Int. J. Numer. Meth. Eng., 71(5), 606-629. https://doi.org/10.1002/nme.1964
  22. Kang, F., Jun-Jie, L. and Qing, X. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl.Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050
  23. Kaveh, A., Vaez, S.R.H., Hosseini, P., et al. (2016), "Detection of damage in truss structures using simplified dolphin Echolocation algorithm based on modal data", Smart Struct. Syst., 18(5), 983-1004. https://doi.org/10.12989/sss.2016.18.5.983
  24. Khoshnoudian, F. and Esfandiari, A. (2011), "Structural damage diagnosis using modal data", Scientia Iranica, 18(4), 853-860. https://doi.org/10.1016/j.scient.2011.07.012
  25. Khoshnoudian, F., Talaei, S. and Fallahian, M. (2017), "Structural damage detection using FRF data, 2D-PCA, artificial neural networks and imperialist competitive algorithm simultaneously", Int. J. Struct. Stab. Dynam., 17(7), 1750073. https://doi.org/10.1142/S0219455417500730
  26. Kuwabara, M., Yoshitomi, S. and Takewaki, I. (2013), "A new approach to system identification and damage detection of high-rise buildings", Struct. Control Health Monit., 20(5), 703-727. https://doi.org/10.1002/stc.1486
  27. Lee, H., Battle, A., Raina, R., et al. (2007), Efficient sparse coding algorithms. NIPS, Kolkata
  28. Lee, U. and Shin, J. (2002), "A frequency response function-based structural damage identification method, Computers and Structures", Comput. Struct., 80(2), 117-132. https://doi.org/10.1016/S0045-7949(01)00170-5
  29. Li, J., Dackermann, U., Xu, Y.L., et al. (2011), "Damage identification in civil engineering structures utilising PCA-compressed residual frequency response functions and neural network ensembles", Struct. Control Health Monit., 18(2), 207-226. https://doi.org/10.1002/stc.369
  30. Liu H., Liu C. and Huang Y. (2011), "Adaptive feature extraction using sparse coding for machinery fault diagnosis", Mech. Syst. Signal Pr., 25(2), 558-574. https://doi.org/10.1016/j.ymssp.2010.07.019
  31. Maia, N.M.M., Silva, J.M.M., Almas, E.A.M., et al. (2003), "Damage detection in structures: from mode shape to frequency response function methods", Mech. Syst. Signal Pr., 17(3), 489-498. https://doi.org/10.1006/mssp.2002.1506
  32. Marwala, T. (2000), "Damage Identification Using Committee of Neural Networks", J. Eng. Mech., 126(1), 43-50. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(43)
  33. Marwala, T. and Hunt, H.E.M. (1999), "Fault identification using finite element models and neural networks", Mech. Syst. Signal Pr., 13(3), 475-490. https://doi.org/10.1006/mssp.1998.1218
  34. Mehrjoo, M., Khaji, N., Moharrami, H., et al. (2008), "Damage detection of truss bridge joints using artificial neural networks", Expert Syst. Appl., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008
  35. Ni Y.Q., Zhou, X.T. and Ko, J.M. (2006), "Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks", J. Sound Vib., 290(1), 242-263. https://doi.org/10.1016/j.jsv.2005.03.016
  36. Nozarian, M.M. and Esfandiari, A. (2009), "Structural damage identification using frequency response function", Mater. Forum, 33, 443-449.
  37. Opitz, D.W. and Shavlik, J.W. (1996), "Actively searching for an effective neural network ensemble",Connection Science, 8(3-4), 337-353. https://doi.org/10.1080/095400996116802
  38. Pearson, K. (1901), "On lines and planes of closest fit to systems of points in space", Philos. Mag., 2(11), 559-572. https://doi.org/10.1080/14786440109462720
  39. Perrone, M.P. and Cooper, L.N. (1993), When networks disagree: Ensemble method for neural networks, (Ed., R.J. Mammone), Artificial Neural Networks for Speech and Vision. Chapman & Hall, New York.
  40. Qiao, L., Esmaeily, A. and Melhem, H.G. (2009), "Structural damage detection using signal pattern-recognition", Key Eng.Mater., 400, 465-470.
  41. Qiao, L., Esmaeily, A. and Melhem, H.G. (2012), "Signal pattern recognition for damage diagnosis in structures", Comput. Aided Civil Infrastruct. Eng., 27(9), 699-710. https://doi.org/10.1111/j.1467-8667.2012.00766.x
  42. Roy, K. and Ray-Chaudhuri, S. (2013), "Fundamental mode shape and its derivatives in structural damage localization", J. Sound Vib., 332(21), 5584-5593. https://doi.org/10.1016/j.jsv.2013.05.003
  43. Rubinstein, R., Bruckstein, A. and Elad, M. (2010), "Dictionaries for sparse representation modeling", Proceedings of the IEEE, 98(6), 1045-1057 https://doi.org/10.1109/JPROC.2010.2040551
  44. Sampaio, R.P.C, Maia, N.M.M. and Silva, J.M.M. (1999), "Damage detection using the frequency-response-function curvature method", J. Sound Vib., 226(5), 1029-1042. https://doi.org/10.1006/jsvi.1999.2340
  45. Shadan, F., Khoshnoudian, F. and Esfandiari, A. (2015), "A frequency response-based structural damage identification using model updating method", Struct.Control Health Monit., DOI: 10.1002/stc.1768
  46. Shadan, F., Khoshnoudian, F., Inman, D.J., et al. (2016), "Experimental validation of a FRF-based model updating method", J. Vib. Control.
  47. Trendafilova, I. and Heylen, W. (2003), "Categorization and pattern recognition methods for damage localization from vibration measurements", Mech. Syst. Signal Pr., 17(4), 825-836. https://doi.org/10.1006/mssp.2002.1518
  48. Wang, Y. (2015), "Probabilistic-based damage identification based on error functions with an autofocusing feature", Smart Struct. Syst., 15(4), 1121-1137. https://doi.org/10.12989/sss.2015.15.4.1121
  49. Wang, Z., Chen, S., Lederman, G., et al. (2013), "Comparison of sparse representation and fourier discriminant methods: damage location classification in indirect lab-scale bridge structural health monitoring", Structures Congress, 436-446.
  50. Wright, J., Yang, A.Y., Ganesh, A., et al. (2009), "Robust face recognition via sparse representation", IEEE T. Pattern Anal. Machine Intell., 3(2), 210-227
  51. Wright, J., Yi, M., Mairal, J., et al. (2009), "Sparse representation for computer vision and pattern recognition", Proceedings of the IEEE, 98(6).
  52. Zang, C. and Imregun, M. (2001), "Structural damage detection using artificial neural networks and measured FRF data reduced via principal component projection", J. Sound Vib., 242(5), 813-827. https://doi.org/10.1006/jsvi.2000.3390
  53. Zapico-Valle, Luis J. and Garcia-Dieguez M. (2014), "Dynamic modeling and identification of the Uniovi structure", Int. J. Simul. Multidiscip. Des. O., 5, 6.
  54. Zhou, Z., Wu, J. and Tang, W. (2002), "Ensembling neural networks: Many could be better than all", Artif. Intell., 137, 239-263. https://doi.org/10.1016/S0004-3702(02)00190-X
  55. Zolfaghari, M., Jourabloo, A., Gozlo, S., et al. (2014), "3D human pose estimation from image using couple sparse coding", Mach. Vision Appl., 25(6), 1489-1499. https://doi.org/10.1007/s00138-014-0613-6