DOI QR코드

DOI QR Code

Hybrid fuzzy model to predict strength and optimum compositions of natural Alumina-Silica-based geopolymers

  • Nadiri, Ata Allah (Department of Earth Sciences, Faculty of Natural Science, University of Tabriz) ;
  • Asadi, Somayeh (Department of Architectural Engineering, Pennsylvania State University) ;
  • Babaizadeh, Hamed (LADOTD) ;
  • Naderi, Keivan (Department of Earth Sciences, Faculty of Natural Science, University of Tabriz)
  • Received : 2016.01.30
  • Accepted : 2017.11.20
  • Published : 2018.01.25

Abstract

This study introduces the supervised committee fuzzy model as a hybrid fuzzy model to predict compressive strength (CS) of geopolymers prepared from alumina-silica products. For this purpose, more than 50 experimental data that evaluated the effect of $Al_2O_3/SiO_2$, $Na_2O/Al_2O_3$, $Na_2O/H_2O$ and Na/[Na+K] on (CS) of geopolymers were collected from the literature. Then, three different Fuzzy Logic (FL) models (Sugeno fuzzy logic (SFL), Mamdani fuzzy logic (MFL), and Larsen fuzzy logic (LFL)) were adopted to overcome the inherent uncertainty of geochemical parameters and to predict CS. After validating the model, it was found that the SFL model is superior to MFL and LFL models, but each of the FL models has advantages to predict CS. Therefore, to achieve the optimal performance, the supervised committee fuzzy logic (SCFL) model was developed as a hybrid method to combine the benefits of individual FL models. The SCFL employs an artificial neural network (ANN) model to re-predict the CS of three FL model predictions. The results also show significant fitting improvement in comparison with individual FL models.

Keywords

References

  1. Ahmadi-Nedushan, B. (2012), "An optimized instance based learning algorithm for estimation of compressive strength of concrete", J. Eng. Appl. Artif. Intel., 25(5), 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012
  2. Asadi, S., Hassan, M., Nadiri, A.A. and Dylla, H. (2014), "Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification", Environ. Sci. Poll. Res., 21, 8847-8857. https://doi.org/10.1007/s11356-014-2821-z
  3. ASCE (2000a), "Task committee on application of artificial neural networks in hydrology, artificial neural network in hydrology. I: Preliminary concepts", J. Hydrolog. Eng., 5(2), 115-123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
  4. Bohlooli, H., Nazari, A., Khalaj, G., Kaykha, M.M. and Riahi, S. (2012), "Experimental investigations and fuzzy logic modeling of compressive strength of geopolymers with seeded fly ash and rice husk bark ash", Compos. Part B: Eng., 43(3), 1293-1301. https://doi.org/10.1016/j.compositesb.2012.01.012
  5. Bondar, D. (2014), "Use of a neural network to predict strength and optimum composition of natural alumina-silica-based geopolymers", J. Mater. Civil Eng., 26, 499-504. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000829
  6. Bondar, D., Lynsdale, C. and Milestone, N. (2012), "Simplified Model for Prediction of Compressive Strength of Alkali-Activated Natural Pozzolans", J. Mater. Civil Eng., 24(4), 391-400. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000400
  7. Chen, C.H. and Lin, Z.S. (2006), "A committee machine with empirical formulas for permeability prediction", Comput. Geosci., 32(4), 485-496. https://doi.org/10.1016/j.cageo.2005.08.003
  8. Chen, M.S. and Wang, S.W. (1999), "Fuzzy clustering analysis for optimizing fuzzy membership functions", Fuzzy Set. Syst., 103(2), 239-254. https://doi.org/10.1016/S0165-0114(98)00224-3
  9. Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", J. Eng. Appl. Artif. Intel., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001
  10. Chitsazan, N., Nadiri, A.A. and Tsai, F.F.C. (2015), "Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging", J. Hydrol., 528, 52-62. https://doi.org/10.1016/j.jhydrol.2015.06.007
  11. Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation", J. Intel. Fuzzy Syst., 2, 267-278. https://doi.org/10.1109/91.324806
  12. de Castilho, V.C., El Debs, M.K. and Nicoletti, M. (2007), "Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists", J. Appl. Artif. Itel., 20(4), 519-530. https://doi.org/10.1016/j.engappai.2006.09.003
  13. Duxson, P. Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A: Physicochem. Eng. Aspect., 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  14. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  15. Duxson, P., Provis, J.L., Lukey, G.C. and van Deventer, J.S.J. (2007), "The role of inorganic polymer technology in the development of "green concrete"", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  16. Ferone, C., Roviello, G., Colangelo, F., Cioffi, R. and Tarallo, O. (2013), "Novel hybrid organic-geopolymer materials", Appl. Clay Sci., 73, 42-50. https://doi.org/10.1016/j.clay.2012.11.001
  17. Grande, J.A., Andujar, J.M., Aroba, J., Beltran, R., De La Torre, M.L., Ceron, J.C. and Gomez, T. (2010), "Fuzzy modeling of the spatial evolution of the chemistry in the Tinto River (SW Spain)", Water Resour. Manage., 24(12), 3219-3235. https://doi.org/10.1007/s11269-010-9603-2
  18. Gutierrez-Estrada, J.C., De Pedro-Sanz, E., Lopez-Luque, R. and Pulido-Calvo, I. (2004), "Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla.) Intensive rearing system", Aquacult. Eng., 31, 183-203. https://doi.org/10.1016/j.aquaeng.2004.03.001
  19. Gutierrez Estrada, J.C., Pulido Calvo, I. and Bilton, D.T. (2013), "Consistency of fuzzy rules in an ecological context", Ecolog. Model., 251, 187-198. https://doi.org/10.1016/j.ecolmodel.2012.12.013
  20. Haykin, S.S. (1998), Neural Networks: A Comprehensive Foundation, Prentice Hall.
  21. Kadkhodaie-Ilkhchi, A. and Amini, A. (2009), "A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz oilfield, South Iran", J. Petrol. Geol., 32(1), 67-78. https://doi.org/10.1111/j.1747-5457.2009.00435.x
  22. Khater, H.M. (2016), "Nano-Silica effect on the physicomechanical properties of geopolymer composites", Adv. Nano Res., 4(3), 181-195. https://doi.org/10.12989/anr.2016.4.3.181
  23. Labani, M.M., Kadkhodaie-Ilkhchi, A. and Salahshoor, K. (2010), "Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin", J. Petrol. Sci. Eng., 72(1-2), 175-185. https://doi.org/10.1016/j.petrol.2010.03.015
  24. Larsen, P.M. (1980), "Industrial application of fuzzy logic control", Int. J. Man-Mach. Stud., 12, 3-10. https://doi.org/10.1016/S0020-7373(80)80050-2
  25. Li, H., Chen, C.L.P. and Huang, H.P. (2000), Fuzzy Neural Intelligent Systems: Mathematical Foundation and the Application in Engineering, CRC Press LLC.
  26. Mamdani, E.H. (1976), "Advances in the linguistic synthesis of fuzzy controllers", Int. J. Man-Mach. Stud., 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
  27. Mamdani, E.H. (1977), "Application of fuzzy logic to approximate reasoning using linguistic synthesis", IEEE Tran. Comput., 26(12), 1182-1191.
  28. Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man-Mach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  29. Motamedi, S., Shamshirband, S., Petkovic, D. and Hashim, R. (2015), "Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sandcement mixture", Powder Technol., 278, 278-285. https://doi.org/10.1016/j.powtec.2015.02.045
  30. Nadiri, A.A. (2015), Application of Artificial Intelligence Methods in Geosciences and Hydrology, OMICS Publisher.
  31. Nadiri, A.A., Chitsazan, N., Tsai, F.T.C. and Asghari Moghaddam, A.A. (2014), "Bayesian artificial intelligence model averaging for hydraulic conductivity estimation", J. Hydrolog. Eng., 19(3), 520-532. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000824
  32. Nadiri, A.A., Fijani, E., Tsai, F.T.C. and Asghari Moghaddam, A.A. (2013), "Supervised committee machine with artificial intelligence for prediction of fluoride concentration", Hydroinform. J., 15(4), 1474-1490. https://doi.org/10.2166/hydro.2013.008
  33. Nadiri, A.A., Gharekhani, M., Khatibi, R. and Asghari Moghaddam, A. (2017b), "Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models", Environ. Sci. Poll. Res., 24(9), 8562-8577. https://doi.org/10.1007/s11356-017-8489-4
  34. Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S. and Asghari Moghaddam, A. (2017a), "Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)", Sci. Total Environ., 574, 691-706. https://doi.org/10.1016/j.scitotenv.2016.09.093
  35. Nadiri, A.A., Hassan, M.M. and Asadi, S. (2015), "Supervised intelligence committee machine to evaluate field performance of photocatalytic asphalt pavement for ambient air purification", Tran. Res. Record: J. Tran. Res. Board, 2528, 96-105. https://doi.org/10.3141/2528-11
  36. Nadiri, A.A., Sedghi, Z., Khatibi, R. and Gharekhani, M. (2017c), "Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures", Sci. Total Environ., 593-594, 75-90. https://doi.org/10.1016/j.scitotenv.2017.03.109
  37. Nazari, A., Pacheco-Torgal, F., Cevik, A. and. Sanjayan, J.G. (2015), "Prediction of the compressive strength of alkaliactivated geopolymeric concrete binders by neuro-fuzzy modeling: a case studys", Handbook of Alkali-Activated Cements, Mortars and Concretes.
  38. Nourani, V., Asghari Mogaddam, A., Nadiri, A.A. and Sing, V.P. (2008), "Forecasting spatiotemporal water levels of Tabriz aquifer", Trend. Appl. Sci. Res., 3(4), 319-329. https://doi.org/10.3923/tasr.2008.319.329
  39. Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
  40. Palomo, A., Grutzeck, M.W. and Blanco, M.T. (1999), "Alkaliactivated fly ashes: A cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  41. Panagiotopoulou, C., Kontori, E., Perraki, T. and Kakali, G. (2007), "Dissolution of aluminosilicate minerals and byproducts in alkaline media", J. Mater. Sci., 42(9), 2967-2973. https://doi.org/10.1007/s10853-006-0531-8
  42. Pulido Calvo, I. and Gutierrez Estrada, J.C. (2009), "Improved irrigation water demand forecasting using a soft-computing hybrid model", Biosyst. Eng., 102, 202-218. https://doi.org/10.1016/j.biosystemseng.2008.09.032
  43. Roviello, G., Ricciotti, L., Ferone, C., Colangelo, F. and Tarallo, O., (2015), "Fire resistant melamine based organic-geopolymer hybrid composites", Cement Concrete Compos., 59, 89-99. https://doi.org/10.1016/j.cemconcomp.2015.03.007
  44. Subear, S. and Van Riessen, A. (2007), "Thermechanical and micro-structure of unconfined compressive of sodium-poly (sialate-siloxo) (Na-PSS) geopolymers", J. Mater. Sci., 42(9), 3117-3123. https://doi.org/10.1007/s10853-006-0522-9
  45. Sugeno, M. (1985), Industrial Application of Fuzzy Control, North-Holland, New York.
  46. Tayfur, G. and Nadiri, A.A. (2014), "Supervised intelligent committee machine for hydraulic conductivity estimation", Water Resour. Manage., 28, 1173-1184. https://doi.org/10.1007/s11269-014-0553-y
  47. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications", Miner. Eng., 10(7), 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0
  48. Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016
  49. Xu, H., van Deventer, J.S.J. and Lukey, G.C. (2001), "Effect of alkali metals on the preferential geopolymerization of Stilbite/Kaolinite mixtures", Indust. Eng. Chem. Res., 40(17), 3749-3756. https://doi.org/10.1021/ie010042b

Cited by

  1. A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2018, https://doi.org/10.12989/cac.2020.26.5.397
  2. Suspended sediment load prediction using artificial intelligence techniques: comparison between four state-of-the-art artificial neural network techniques vol.14, pp.3, 2018, https://doi.org/10.1007/s12517-020-06408-1