References
- Ahmadi-Nedushan, B. (2012), "An optimized instance based learning algorithm for estimation of compressive strength of concrete", J. Eng. Appl. Artif. Intel., 25(5), 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012
- Asadi, S., Hassan, M., Nadiri, A.A. and Dylla, H. (2014), "Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification", Environ. Sci. Poll. Res., 21, 8847-8857. https://doi.org/10.1007/s11356-014-2821-z
- ASCE (2000a), "Task committee on application of artificial neural networks in hydrology, artificial neural network in hydrology. I: Preliminary concepts", J. Hydrolog. Eng., 5(2), 115-123. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
- Bohlooli, H., Nazari, A., Khalaj, G., Kaykha, M.M. and Riahi, S. (2012), "Experimental investigations and fuzzy logic modeling of compressive strength of geopolymers with seeded fly ash and rice husk bark ash", Compos. Part B: Eng., 43(3), 1293-1301. https://doi.org/10.1016/j.compositesb.2012.01.012
- Bondar, D. (2014), "Use of a neural network to predict strength and optimum composition of natural alumina-silica-based geopolymers", J. Mater. Civil Eng., 26, 499-504. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000829
- Bondar, D., Lynsdale, C. and Milestone, N. (2012), "Simplified Model for Prediction of Compressive Strength of Alkali-Activated Natural Pozzolans", J. Mater. Civil Eng., 24(4), 391-400. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000400
- Chen, C.H. and Lin, Z.S. (2006), "A committee machine with empirical formulas for permeability prediction", Comput. Geosci., 32(4), 485-496. https://doi.org/10.1016/j.cageo.2005.08.003
- Chen, M.S. and Wang, S.W. (1999), "Fuzzy clustering analysis for optimizing fuzzy membership functions", Fuzzy Set. Syst., 103(2), 239-254. https://doi.org/10.1016/S0165-0114(98)00224-3
- Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", J. Eng. Appl. Artif. Intel., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001
- Chitsazan, N., Nadiri, A.A. and Tsai, F.F.C. (2015), "Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging", J. Hydrol., 528, 52-62. https://doi.org/10.1016/j.jhydrol.2015.06.007
- Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation", J. Intel. Fuzzy Syst., 2, 267-278. https://doi.org/10.1109/91.324806
- de Castilho, V.C., El Debs, M.K. and Nicoletti, M. (2007), "Using a modified genetic algorithm to minimize the production costs for slabs of precast prestressed concrete joists", J. Appl. Artif. Itel., 20(4), 519-530. https://doi.org/10.1016/j.engappai.2006.09.003
- Duxson, P. Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M. and van Deventer, J.S.J. (2005), "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Coll. Surf. A: Physicochem. Eng. Aspect., 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
- Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
- Duxson, P., Provis, J.L., Lukey, G.C. and van Deventer, J.S.J. (2007), "The role of inorganic polymer technology in the development of "green concrete"", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
- Ferone, C., Roviello, G., Colangelo, F., Cioffi, R. and Tarallo, O. (2013), "Novel hybrid organic-geopolymer materials", Appl. Clay Sci., 73, 42-50. https://doi.org/10.1016/j.clay.2012.11.001
- Grande, J.A., Andujar, J.M., Aroba, J., Beltran, R., De La Torre, M.L., Ceron, J.C. and Gomez, T. (2010), "Fuzzy modeling of the spatial evolution of the chemistry in the Tinto River (SW Spain)", Water Resour. Manage., 24(12), 3219-3235. https://doi.org/10.1007/s11269-010-9603-2
- Gutierrez-Estrada, J.C., De Pedro-Sanz, E., Lopez-Luque, R. and Pulido-Calvo, I. (2004), "Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla.) Intensive rearing system", Aquacult. Eng., 31, 183-203. https://doi.org/10.1016/j.aquaeng.2004.03.001
- Gutierrez Estrada, J.C., Pulido Calvo, I. and Bilton, D.T. (2013), "Consistency of fuzzy rules in an ecological context", Ecolog. Model., 251, 187-198. https://doi.org/10.1016/j.ecolmodel.2012.12.013
- Haykin, S.S. (1998), Neural Networks: A Comprehensive Foundation, Prentice Hall.
- Kadkhodaie-Ilkhchi, A. and Amini, A. (2009), "A fuzzy logic approach to estimating hydraulic flow units from well log data: A case study from the Ahwaz oilfield, South Iran", J. Petrol. Geol., 32(1), 67-78. https://doi.org/10.1111/j.1747-5457.2009.00435.x
- Khater, H.M. (2016), "Nano-Silica effect on the physicomechanical properties of geopolymer composites", Adv. Nano Res., 4(3), 181-195. https://doi.org/10.12989/anr.2016.4.3.181
- Labani, M.M., Kadkhodaie-Ilkhchi, A. and Salahshoor, K. (2010), "Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin", J. Petrol. Sci. Eng., 72(1-2), 175-185. https://doi.org/10.1016/j.petrol.2010.03.015
- Larsen, P.M. (1980), "Industrial application of fuzzy logic control", Int. J. Man-Mach. Stud., 12, 3-10. https://doi.org/10.1016/S0020-7373(80)80050-2
- Li, H., Chen, C.L.P. and Huang, H.P. (2000), Fuzzy Neural Intelligent Systems: Mathematical Foundation and the Application in Engineering, CRC Press LLC.
- Mamdani, E.H. (1976), "Advances in the linguistic synthesis of fuzzy controllers", Int. J. Man-Mach. Stud., 8(6), 669-678. https://doi.org/10.1016/S0020-7373(76)80028-4
- Mamdani, E.H. (1977), "Application of fuzzy logic to approximate reasoning using linguistic synthesis", IEEE Tran. Comput., 26(12), 1182-1191.
- Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man-Mach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Motamedi, S., Shamshirband, S., Petkovic, D. and Hashim, R. (2015), "Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sandcement mixture", Powder Technol., 278, 278-285. https://doi.org/10.1016/j.powtec.2015.02.045
- Nadiri, A.A. (2015), Application of Artificial Intelligence Methods in Geosciences and Hydrology, OMICS Publisher.
- Nadiri, A.A., Chitsazan, N., Tsai, F.T.C. and Asghari Moghaddam, A.A. (2014), "Bayesian artificial intelligence model averaging for hydraulic conductivity estimation", J. Hydrolog. Eng., 19(3), 520-532. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000824
- Nadiri, A.A., Fijani, E., Tsai, F.T.C. and Asghari Moghaddam, A.A. (2013), "Supervised committee machine with artificial intelligence for prediction of fluoride concentration", Hydroinform. J., 15(4), 1474-1490. https://doi.org/10.2166/hydro.2013.008
- Nadiri, A.A., Gharekhani, M., Khatibi, R. and Asghari Moghaddam, A. (2017b), "Assessment of groundwater vulnerability using supervised committee to combine fuzzy logic models", Environ. Sci. Poll. Res., 24(9), 8562-8577. https://doi.org/10.1007/s11356-017-8489-4
- Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S. and Asghari Moghaddam, A. (2017a), "Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM)", Sci. Total Environ., 574, 691-706. https://doi.org/10.1016/j.scitotenv.2016.09.093
- Nadiri, A.A., Hassan, M.M. and Asadi, S. (2015), "Supervised intelligence committee machine to evaluate field performance of photocatalytic asphalt pavement for ambient air purification", Tran. Res. Record: J. Tran. Res. Board, 2528, 96-105. https://doi.org/10.3141/2528-11
- Nadiri, A.A., Sedghi, Z., Khatibi, R. and Gharekhani, M. (2017c), "Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures", Sci. Total Environ., 593-594, 75-90. https://doi.org/10.1016/j.scitotenv.2017.03.109
- Nazari, A., Pacheco-Torgal, F., Cevik, A. and. Sanjayan, J.G. (2015), "Prediction of the compressive strength of alkaliactivated geopolymeric concrete binders by neuro-fuzzy modeling: a case studys", Handbook of Alkali-Activated Cements, Mortars and Concretes.
- Nourani, V., Asghari Mogaddam, A., Nadiri, A.A. and Sing, V.P. (2008), "Forecasting spatiotemporal water levels of Tabriz aquifer", Trend. Appl. Sci. Res., 3(4), 319-329. https://doi.org/10.3923/tasr.2008.319.329
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Palomo, A., Grutzeck, M.W. and Blanco, M.T. (1999), "Alkaliactivated fly ashes: A cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
- Panagiotopoulou, C., Kontori, E., Perraki, T. and Kakali, G. (2007), "Dissolution of aluminosilicate minerals and byproducts in alkaline media", J. Mater. Sci., 42(9), 2967-2973. https://doi.org/10.1007/s10853-006-0531-8
- Pulido Calvo, I. and Gutierrez Estrada, J.C. (2009), "Improved irrigation water demand forecasting using a soft-computing hybrid model", Biosyst. Eng., 102, 202-218. https://doi.org/10.1016/j.biosystemseng.2008.09.032
- Roviello, G., Ricciotti, L., Ferone, C., Colangelo, F. and Tarallo, O., (2015), "Fire resistant melamine based organic-geopolymer hybrid composites", Cement Concrete Compos., 59, 89-99. https://doi.org/10.1016/j.cemconcomp.2015.03.007
- Subear, S. and Van Riessen, A. (2007), "Thermechanical and micro-structure of unconfined compressive of sodium-poly (sialate-siloxo) (Na-PSS) geopolymers", J. Mater. Sci., 42(9), 3117-3123. https://doi.org/10.1007/s10853-006-0522-9
- Sugeno, M. (1985), Industrial Application of Fuzzy Control, North-Holland, New York.
- Tayfur, G. and Nadiri, A.A. (2014), "Supervised intelligent committee machine for hydraulic conductivity estimation", Water Resour. Manage., 28, 1173-1184. https://doi.org/10.1007/s11269-014-0553-y
- Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications", Miner. Eng., 10(7), 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0
- Wang, H., Li, H. and Yan, F. (2005), "Synthesis and mechanical properties of metakaolinite-based geopolymer", Coll. Surf. A: Physicochem. Eng. Aspect., 268(1-3), 1-6. https://doi.org/10.1016/j.colsurfa.2005.01.016
- Xu, H., van Deventer, J.S.J. and Lukey, G.C. (2001), "Effect of alkali metals on the preferential geopolymerization of Stilbite/Kaolinite mixtures", Indust. Eng. Chem. Res., 40(17), 3749-3756. https://doi.org/10.1021/ie010042b
Cited by
- A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets vol.26, pp.5, 2018, https://doi.org/10.12989/cac.2020.26.5.397
- Suspended sediment load prediction using artificial intelligence techniques: comparison between four state-of-the-art artificial neural network techniques vol.14, pp.3, 2018, https://doi.org/10.1007/s12517-020-06408-1