참고문헌
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
- E. M. Beesley, An integral representation for the Euler numbers, Amer. Math. Monthly 76 (1969), 389-391. https://doi.org/10.2307/2316431
- L. Carlitz, Some formulas for the Bernoulli and Euler polynomials, Math. Nachr. 25 (1963), 223-231. https://doi.org/10.1002/mana.19630250402
- L. Carlitz, The multiplication formulas for the Bernoulli and Euler polynomials, Math. Mag. 27 (1953), 59-64. https://doi.org/10.2307/3029762
- J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2 (1970), 722-726. https://doi.org/10.1112/jlms/2.Part_4.722
- D. S. Kim and T. Kim, Generalized Boole numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. 110 (2016), no. 2, 823-839.
- D. S. Kim, T. Kim, H.-I. Kwon, and T. Mansour, Nonlinear differential equation for Korobov numbers, Adv. Stud. Contemp. Math. (Kyungshang) 26 (2016), no. 4, 733-740.
- D. S. Kim, T. Kim, H.-I. Kwon, and T. Mansour, Barnes-type Boole polynomials, Contrib. Discrete Math. 11 (2016), no. 1, 7-15.
- T. Kim, Note on the Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 131-136.
- T. Kim, Euler numbers and polynomials associated with zeta functions, Abstr. Apol. Anal. 2008 (2008), Art. ID 581582, 11 pp.
- T. Kim, Some identities for the Bernoulli the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 1, 23-28.
- T. Kim, J. Choi, and Y. H. Kim, A note on the values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 1, 27-34.
-
T. Kim and D. S. Kim, On
$\lambda$ -Bell Polynomials associated with umbral calculus, Russ. J. Math. Phys. 24 (2017), no. 1, 1-10. https://doi.org/10.1134/S1061920817010010 - T. Kim and D. S. Kim, A note on nonlinear Changhee differential equations, Russ. J. Math. Phys. 23 (2016), no. 1, 88-92. https://doi.org/10.1134/S1061920816010064
- T. Kim and D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2086-2098. https://doi.org/10.22436/jnsa.009.05.14
- H. I. Kwon, T. Kim, and J. J. Seo, Some new identities of symmetry for modified degenerate Euler polynomials, Proc. Jangjeon Math. Soc. 19 (2016), no. 2, 237-242.
- D. H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. Monthly. 95 (1988), no. 10, 905-911. https://doi.org/10.1080/00029890.1988.11972114
- F. R. Olson, Some determinants involving Bernoulli and Euler numbers of higher order, Pacific J. Math. 5 (1955), 259-268. https://doi.org/10.2140/pjm.1955.5.259
- L. C. Washington, Introduction to Cyclotomic Fields, Second edition. Graduate Text in Mathematics 83, Springer-Verlag. New York, 1997.
- A. Sharma, q-Bernoulli and Euler numbers of higher order, Duke Math. J. 25 (1958), 343-353. https://doi.org/10.1215/S0012-7094-58-02531-6