References
- A. N. Alahmadi, PI-rings with Artinian proper cyclics are Noetherian, Int. Electron. J. Algebra 13 (2013), 40-42.
- A. Al-Huzali, S. K. Jain, and S. R. Lopez-Permouth, Rings whose cyclics have finite Goldie dimension, J. Algebra 153 (1992), no. 1, 37-40. https://doi.org/10.1016/0021-8693(92)90147-E
- M. Behboodi and S. Roointan-Isfahani, Almost uniserial rings and modules, J. Algebra 446 (2016), 176-187. https://doi.org/10.1016/j.jalgebra.2015.09.024
- V. Camillo and G. Krause, Problem 12, Rings, modules and representations, 133-137, Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009.
- N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman, London, 1994.
- N. Er, Some remarks on a question of Faith, Contemp. Math. 480 (2009), 133-137.
- C. Faith, Algebra II, Springer, Berlin, 1976.
- S. K. Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Mathematical Monographs, Oxford University Press, 2012.
- T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.
- A. Shamsuddin, Rings with krull dimension one, Comm. Algebra 26 (1998), no. 7, 2147-2158. https://doi.org/10.1080/00927879808826266
- L. W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656-658. https://doi.org/10.1090/S0002-9904-1967-11812-3
- C. Somsup, N. V. Sanh, and P. Dan, On serial Noetherian rings, Comm. Algebra 34 (2006), no. 10, 3701-3703. https://doi.org/10.1080/00927870600860858