DOI QR코드

DOI QR Code

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Stachowiak, Radoslaw (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Jagielski, Tomasz (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Kaminski, Michal (Department of Applied Microbiology, Faculty of Biology, University of Warsaw) ;
  • Bielecki, Jacek (Department of Applied Microbiology, Faculty of Biology, University of Warsaw)
  • Received : 2017.06.28
  • Accepted : 2017.10.22
  • Published : 2018.01.28

Abstract

Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

Keywords

References

  1. Cohn L, Delamarre L. 2014. Dendritic cell-targeted vaccines. Front. Immunol. 5: 255.
  2. Rudolph MG, Stanfield RL, Wilson IA. 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24: 419-466.
  3. Daniels MA, Teixeiro E. 2015. TCR signaling in T cell memory. Front. Immunol. 6: 617.
  4. Trovato M, De Berardinis P. 2015. Novel antigen delivery systems. World J. Virol. 4: 156-168. https://doi.org/10.5501/wjv.v4.i3.156
  5. VanCott JL, Chatfield SN, Roberts M, Hone DM, Hohmann EL, Pascual DW, et al. 1998. Regulation of host immune responses by modification of Salmonella virulence genes. Nat. Med. 4: 1247-1252. https://doi.org/10.1038/3227
  6. McBride BW, Mogg A, Telfer JL, Lever MS, Miller J, Turnbull PC, et al. 1998. Protective efficacy of a recombinant protective antigen against Bacillus anthracis challenge and assessment of immunological markers. Vaccine 16: 810-817. https://doi.org/10.1016/S0264-410X(97)00268-5
  7. Airaksinen U, Penttila T, Wahlstrom E, Vuola JM, Puolakkainen M, Sarvas M. 2003. Production of Chlamydia pneumoniae proteins in Bacillus subtilis and their use in characterizing immune responses in the experimental infection model. Clin. Diagn. Lab. Immunol. 10: 367-375.
  8. Olmos-Soto J, Contreras-Flores R. 2003. Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl. Microbiol. Biotechnol. 62: 369-373.
  9. Kakeshita H, Kageyama Y, Endo K, Tohata M, Ara K, Ozaki K, et al. 2011. Secretion of biologically-active human interferonbeta by Bacillus subtilis. Biotechnol. Lett. 33: 1847-1852. https://doi.org/10.1007/s10529-011-0636-2
  10. Westers L, Dijkstra DS, Westers H, van Dijl JM, Quax WJ. 2006. Secretion of functional human interleukin-3 from Bacillus subtilis. J. Biotechnol. 123: 211-224. https://doi.org/10.1016/j.jbiotec.2005.11.007
  11. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K. 2013. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J. Med. Microbiol. 62: 1379-1385. https://doi.org/10.1099/jmm.0.057372-0
  12. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszynska-Sularz G, et al. 2010. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Factor. 9: 2. https://doi.org/10.1186/1475-2859-9-2
  13. Ning D, Leng X, Li Q, Xu W. 2011. Surface-displayed VP28 on Bacillus subtilis spores induce protection against white spot syndrome virus in crayfish by oral administration. J. Appl. Microbiol. 111: 1327-1336. https://doi.org/10.1111/j.1365-2672.2011.05156.x
  14. Duc le H, Hong HA, Fairweather N, Ricca E, Cutting SM. 2003. Bacterial spores as vaccine vehicles. Infect. Immun. 71: 2810-2818.
  15. Mauriello EM, Duc le H, Isticato R, Cangiano G, Hong HA, De Felice M, et al. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22: 1177-1187. https://doi.org/10.1016/j.vaccine.2003.09.031
  16. Gomes PA, Bentancor LV, Paccez JD, Sbrogio-Almeida ME, Palermo MS, Ferreira RC, et al. 2009. Antibody responses elicited in mice immunized with Bacillus subtilis vaccine strains expressing Stx2B subunit of enterohaemorragic Escherichia coli O157:H7. Braz. J. Microbiol. 40: 333-338. https://doi.org/10.1590/S1517-83822009000200023
  17. Titball RW. 2008. Vaccines against intracellular bacterial pathogens. Drug Discov. Today 13: 596-600. https://doi.org/10.1016/j.drudis.2008.04.010
  18. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, et al. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001
  19. Pamer EG. 2004. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4: 812-823. https://doi.org/10.1038/nri1461
  20. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CG. 2010. Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. J. Med. Microbiol. 59: 904-912. https://doi.org/10.1099/jmm.0.018770-0
  21. Radford KJ, Higgins DE, Pasquini S, Cheadle EJ, Carta L, Jackson AM, et al. 2002. A recombinant E. coli v accine t o promote MHC class I-dependent antigen presentation: application to cancer immunotherapy. Gene Ther. 9: 1455-1463. https://doi.org/10.1038/sj.gt.3301812
  22. Huang JM, La Ragione RM, Cooley WA, Todryk S, Cutting SM. 2008. Cytoplasmic delivery of antigens, by Bacillus subtilis enhances Th1 responses. Vaccine 26: 6043-6052. https://doi.org/10.1016/j.vaccine.2008.09.024
  23. Carrero JA, Vivanco-Cid H, Unanue ER. 2012. Listeriolysin O is strongly immunogenic independently of its cytotoxic activity. PLoS One 7: e32310. https://doi.org/10.1371/journal.pone.0032310
  24. Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y. 2004. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumorassociated antigen human papillomavirus-16 E7. Cancer Res. 64: 8821-8825.
  25. Decatur AL, Portnoy DA. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290: 992-995. https://doi.org/10.1126/science.290.5493.992
  26. Schnupf P, Portnoy DA, Decatur AL. 2006. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell. Microbiol. 8: 353-364.
  27. Carreno LJ, Bueno SM, Bull P, Nathenson SG, Kalergis AM. 2007. The half-life of the T-cell receptor/peptide-major histocompatibility complex interaction can modulate T-cell activation in response to bacterial challenge. Immunology 121: 227-237. https://doi.org/10.1111/j.1365-2567.2007.02561.x
  28. Albaghdadi H, Robinson N, Finlay B, Krishnan L, Sad S. 2009. Selectively reduced intracellular proliferation of Salmonella enterica serovar Typhimurium within APCs limits antigen presentation and development of a rapid CD8 T cell response. J. Immunol. 183: 3778-3787. https://doi.org/10.4049/jimmunol.0900843
  29. Radford KJ, Jackson AM, Wang JH, Vassaux G, Lemoine NR. 2003. Recombinant E. coli efficiently delivers antigen and maturation signals to human dendritic cells: presentation of MART1 to CD8+ T cells. Int. J. Cancer 105: 811-819. https://doi.org/10.1002/ijc.11149
  30. Youngman P, Poth H, Green B, York K, Olmedo G, Wager-Smith K. 1989. Methods for genetic manipulation, cloning, and functional analysis of sporulation genes in Bacillus subtilis, pp. 65-87. In Smith I, Slepecky RA, Setlow P (eds.). Regulation of Prokaryotic Development. American Society for Microbiology, Washington, DC.
  31. Stachowiak R, Granicka LH, Wisniewski J, Lyzniak M, Kawiak J, Bielecki J. 2011. Cytotoxicity of listeriolysin O produced by membrane-encapsulated Bacillus subtilis on leukemia cells. J. Microbiol. Biotechnol. 21: 1193-1198.
  32. Stachowiak R, Lyzniak M, Grabowska M, Roeske K, Jagielski T, Bielecki J, et al. 2014. Cytotoxicity of purified listeriolysin O on mouse and human leukocytes and leukaemia cells. BMC Biotechnol. 14: 77. https://doi.org/10.1186/1472-6750-14-77
  33. Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, et al. 2003. The extracellular proteome of Bacillus subtilis under secretion stress conditions. Mol. Microbiol. 49: 143-156. https://doi.org/10.1046/j.1365-2958.2003.03565.x
  34. Sojka L, Fucik V, Krasny L, Barvik I, Jonak J. 2007. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis. J. Bacteriol. 189: 4809-4814. https://doi.org/10.1128/JB.01786-06
  35. Stachowiak R, Lyzniak M, Budziszewska BK, Roeske K, Bielecki J, Hoser G, et al. 2012. Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. J. Biomed. Biotechnol. 2012: 954375.
  36. Sette A, Fikes J. 2003. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol. 15: 461-470. https://doi.org/10.1016/S0952-7915(03)00083-9
  37. Li Pira G, Ivaldi F, Moretti P, Manca F. 2010. High throughput T epitope mapping and vaccine development. J. Biomed. Biotechnol. 2010: 325720.
  38. Jawa V, Cousens L, De Groot AS. 2013. Immunogenicity of Therapeutic Fusion Proteins: Contributory Factors and Clinical Experience, pp. 75-90. In Schmidt SR (ed.). Fusion Protein Technologies for Biopharmaceuticals. John Wiley & Sons, Inc., Hoboken, NJ.
  39. Schulke S, Vogel L, Junker AC, Hanschmann KM, Flaczyk A, Vieths S, et al. 2016. A fusion protein consisting of the vaccine adjuvant monophosphoryl lipid A and the allergen ovalbumin boosts allergen-specific Th1, Th2, and Th17 responses in vitro. J. Immunol. Res. 2016: 4156456.
  40. Yang E, Lu Y, Xu Y, Liang Q, Wang C, Wang H, et al. 2014. Recombinant BCG coexpressing Ag85B, ESAT-6 and Rv3620c elicits specific Th1 immune responses in C57BL/6 mice. Microb. Pathog. 69-70: 53-59. https://doi.org/10.1016/j.micpath.2014.03.011
  41. Gupta S, Termini JM, Raffa FN, Williams CA, Kornbluth RS, Stone GW. 2014. Vaccination with a fusion protein that introduces HIV-1 Gag antigen into a multitrimer CD40L construct results in enhanced CD8+ T cell responses and protection from viral challenge by vaccinia-Gag. J. Virol. 88: 1492-1501. https://doi.org/10.1128/JVI.02229-13
  42. Cheng WF, Chang MC, Sun WZ, Jen YW, Liao CW, Chen YY, et al. 2013. Fusion protein vaccines targeting two tumor antigens generate synergistic anti-tumor effects. PLoS One 8: e71216. https://doi.org/10.1371/journal.pone.0071216
  43. Kohda C, Kawamura I, Baba H, Nomura T, Ito Y, Kimoto T, et al. 2002. Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect. Immun. 70: 1334-1341. https://doi.org/10.1128/IAI.70.3.1334-1341.2002
  44. Singh R, Dominiecki ME, Jaffee EM, Paterson Y. 2005. Fusion to listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J. Immunol. 175: 3663-3673. https://doi.org/10.4049/jimmunol.175.6.3663
  45. Pohl S, Bhavsar G, Hulme J, Bloor AE, Misirli G, Leckenby MW, et al. 2013. Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins. Proteomics 13: 3298-3308.
  46. Mader U, Antelmann H, Buder T, Dahl MK, Hecker M, Homuth G. 2002. Bacillus subtilis functional genomics: genomewide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics 268: 455-467. https://doi.org/10.1007/s00438-002-0774-2
  47. Savina A, Amigorena S. 2007. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219: 143-156. https://doi.org/10.1111/j.1600-065X.2007.00552.x
  48. Wei CH, Sherman LA. 2007. N-terminal trimer extension of nominal CD8 T cell epitopes is sufficient to promote crosspresentation to cognate CD8 T cells in vivo. J. Immunol. 179: 8280-8286.
  49. Luiz WB, Cavalcante RC, Paccez JD, Souza RD, Sbrogio-Almeida ME, Ferreira RC, et al. 2008. Boosting systemic and secreted antibody responses in mice orally immunized with recombinant Bacillus subtilis strains following parenteral priming with a DNA vaccine encoding the enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae B subunit. Vaccine 26: 3998-4005.
  50. Lee S, Belitsky BR, Brinker JP, Kerstein KO, Brown DW, Clements JD, et al. 2010. Development of a Bacillus subtilisbased rotavirus vaccine. Clin. Vaccine Immunol. 17: 1647-1655. https://doi.org/10.1128/CVI.00135-10
  51. Lin IY, Van TT, Smooker PM. 2015. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines 3: 940-972. https://doi.org/10.3390/vaccines3040940
  52. Becavin C, Bouchier C, Lechat P, Archambaud C, Creno S, Gouin E, et al. 2014. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. mBio 5: e00969-e00914.

Cited by

  1. Multimode CaCO3/pneumolysin antigen delivery systems for inducing efficient cellular immunity for anti-tumor immunotherapy vol.420, pp.1, 2018, https://doi.org/10.1016/j.cej.2021.129746