DOI QR코드

DOI QR Code

Impact of the Isolation Source on the Biofilm Formation Characteristics of Bacillus cereus

  • Hussain, Mohammad Shakhawat (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University)
  • Received : 2017.07.12
  • Accepted : 2017.11.06
  • Published : 2018.01.28

Abstract

The human pathogen and food spoiler Bacillus cereus can form biofilms that act as a persistent source of contamination, which is of public health concern. This study aimed to understand how the source of isolation might affect the behavior of biofilm formation. Biofilm formation abilities of 56 strains of B. cereus isolated from different environments, including human food poisoning, farm, and food, were determined. Crystal violet assay results revealed significant (p < 0.05) differences in biofilm formation abilities among the strains isolated from different sources only at an early stage of incubation. However, strain origin showed no impact on later stage of biofilm formation. Next, correlation of the group of isolates on the basis of their biofilm-forming abilities with the number of sessile cells, sporulation, and extracellular polymeric substance (EPS) formation was determined. The number of sessile cells and spores in biofilms was greatly influenced by the groups of isolates that formed dense, moderate, and weak biofilms. The contribution of extracellular DNA and/or proteins to EPS formation was also positively correlated with biofilm formation abilities. Our results that the source of isolation had significant impact on biofilm formation might provide important information to develop strategies to control B. cereus biofilm formation.

Keywords

References

  1. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575. https://doi.org/10.1038/nrmicro.2016.94
  2. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298. https://doi.org/10.1126/science.280.5361.295
  3. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, et al. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59: 1114-1128.
  4. Lasa I, Penades JR. 2006. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 157: 99-107. https://doi.org/10.1016/j.resmic.2005.11.003
  5. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633. https://doi.org/10.1038/nrmicro2415
  6. Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2: 114-122. https://doi.org/10.1038/nrd1008
  7. Mah TFC, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9: 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
  8. Ceuppens S, Boon N, Uyttendaele M. 2013. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 84: 433-450.
  9. De Jonghe V, Coorevits A, De Block J, Van Coillie E, Grijspeerdt K, Herman L, et al. 2010. Toxinogenic and spoilage potential of aerobic spore-formers isolated from raw milk. Int. J. Food Microbiol. 136: 318-325.
  10. Bennett SD, Walsh KA, Gould LH. 2013. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus - United States, 1998-2008. Clin. Infect. Dis. 57: 425-433.
  11. Scharff RL. 2012. Economic burden from health losses due to foodborne illness in the United States. J. Food Prot. 75: 123-131. https://doi.org/10.4315/0362-028X.JFP-11-058
  12. European Food Safety Authority and European Centre for Disease Prevention and Control. 2016. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14: 4634-4864.
  13. Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. https://doi.org/10.1128/CMR.00073-09
  14. Svensson B, Ekelund K, Ogura H, Christiansson A. 2004. Characterisation of Bacillus cereus isolated from milk silo tanks at eight different dairy plants. Int. Dairy J. 14: 17-27. https://doi.org/10.1016/S0958-6946(03)00152-3
  15. Teixeira P, Lopes Z, Azeredo J, Oliveira R, Vieira MJ. 2005. Physico-chemical surface characterization of a bacterial population isolated from a milking machine. Food Microbiol. 22: 247-251. https://doi.org/10.1016/j.fm.2004.03.010
  16. Majed R, Faille C, Kallassy M, Gohar M. 2016. Bacillus cereus biofilms - same, only different. Front. Microbiol. 7: 1054.
  17. Hayrapetyan H, Muller L, Tempelaars M, Abee T, Nierop Groot M. 2015. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. Int. J. Food Microbiol. 200: 72-79. https://doi.org/10.1016/j.ijfoodmicro.2015.02.005
  18. Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M. 2009. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 75: 6616-6618.
  19. Wijman JG, De Leeuw PP, Moezelaar R, Zwietering MH, Abee T. 2007. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl. Environ. Microbiol. 73: 1481-1488. https://doi.org/10.1128/AEM.01781-06
  20. Griffiths MW. 1992. Bacillus cereus in liquid milk and other milk products. Int. Dairy Fed. 275: 36-39.
  21. Hussain MS, Oh DH. 2017. Substratum attachment location and biofilm formation by Bacillus cereus strains isolated from different sources: effect on total biomass production and sporulation in different growth conditions. Food Control 77: 270-280. https://doi.org/10.1016/j.foodcont.2017.02.014
  22. Doijad SP, Barbuddhe SB, Garg S, Poharkar KV, Kalorey DR, Kurkure NV, et al. 2015. Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PLoS One 10: e0137046. https://doi.org/10.1371/journal.pone.0137046
  23. Kadam SR, den Besten HMW, van der Veen S, Zwietering MH, Moezelaar R, Abee T. 2013. Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin. Int. J. Food Microbiol. 165: 259-264. https://doi.org/10.1016/j.ijfoodmicro.2013.05.025
  24. Nair A, Rawool DB, Doijad S, Poharkar K, Mohan V, Barbuddhe SB, et al. 2015. Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. Infect. Genet. Evol. 36: 424-433. https://doi.org/10.1016/j.meegid.2015.08.012
  25. Castelijn GA, van der Veen S, Zwietering MH, Moezelaar R, Abee T. 2012. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 28: 51-63. https://doi.org/10.1080/08927014.2011.648927
  26. Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, et al. 2013. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13: 47. https://doi.org/10.1186/1471-2334-13-47
  27. Merritt JH, Kadouri DE, O'Toole GA. 2005. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. Chapter 1: Unit 1B.1.
  28. Saa Ibusquiza P, Nierop Groot M, Deban-Valles A, Abee T, den Besten HMW. 2015. Impact of growth conditions and role of sigB on Listeria monocytogenes fitness in single and mixed biofilms cultured with Lactobacillus plantarum. Food Res. Int. 71: 140-145. https://doi.org/10.1016/j.foodres.2015.03.001
  29. Fernandez Ramirez MD, Smid EJ, Abee T, Nierop Groot MN. 2015. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. Int. J. Food Microbiol. 207: 23-29. https://doi.org/10.1016/j.ijfoodmicro.2015.04.030
  30. Sillanpaa J, Martinez B, Antikainen J, Toba T, Kalkkinen N, Tankka S, et al. 2000. Characterization of the collagenbinding S-layer protein CbsA of Lactobacillus crispatus. J. Bacteriol. 182: 6440-6450. https://doi.org/10.1128/JB.182.22.6440-6450.2000
  31. Kamar R, Gohar M, Jehanno I, Rejasse A, Kallassy M, Lereclus D, et al. 2013. Pathogenic potential of Bacillus cereus strains as revealed by phenotypic analysis. J. Clin. Microbiol. 51: 320-323. https://doi.org/10.1128/JCM.02848-12
  32. Auger S, Krin E, Aymerich S, Gohar M. 2006. Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl. Environ. Microbiol. 72: 937-941. https://doi.org/10.1128/AEM.72.1.937-941.2006
  33. Culler HF, Mota CM, Abe CM, Elias WP, Sircili MP, Franzolin MR. 2014. Atypical enteropathogenic Escherichia coli strains form biofilm on abiotic surfaces regardless of their adherence pattern on cultured epithelial cells. Biomed. Res. Int. 2014: 845147.
  34. Vilain S, Pretorius JM, Theron J, Brozel VS. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl. Environ. Microbiol. 75: 2861-2868. https://doi.org/10.1128/AEM.01317-08
  35. Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, et al. 2007. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc. Natl. Acad. Sci. USA 104: 17801-17806. https://doi.org/10.1073/pnas.0705599104
  36. Schmid T, Burkhard J, Yeo BS, Zhang W, Zenobi R. 2008. Towards chemical analysis of nanostructures in biofilms I: imaging of biological nanostructures. Anal. Bioanal. Chem. 391: 1899-1905. https://doi.org/10.1007/s00216-008-2100-2
  37. Denkhaus E, Meisen S, Telgheder U, Wingender J. 2007. Chemical and physical methods for characterisation of biofilms. Microchim. Acta 158: 1-27. https://doi.org/10.1007/s00604-006-0688-5
  38. Faille C, Benezech T, Midelet-Bourdin G, Lequette Y, Clarisse M, Ronse G, et al. 2014. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments. Food Microbiol. 40: 64-74.

Cited by

  1. Enzymatic Inactivation of Pathogenic and Nonpathogenic Bacteria in Biofilms in Combination with Chlorine vol.82, pp.4, 2018, https://doi.org/10.4315/0362-028x.jfp-18-244
  2. Antibacterial and anti-adhesive efficiency of Pediococcus acidilactici against foodborne biofilm producer Bacillus cereus attached on different food processing surfaces vol.28, pp.3, 2018, https://doi.org/10.1007/s10068-018-0518-7
  3. Prevalence of the Strains of Bacillus cereus Group in Artisanal Mexican Cheese vol.17, pp.1, 2020, https://doi.org/10.1089/fpd.2019.2673
  4. Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana vol.30, pp.4, 2018, https://doi.org/10.4014/jmb.1907.07030
  5. Biofilm Production by Enterotoxigenic Strains of Bacillus cereus in Different Materials and under Different Environmental Conditions vol.8, pp.7, 2020, https://doi.org/10.3390/microorganisms8071071
  6. Effect of dry sanitizing methods on Bacillus cereus biofilm vol.52, pp.2, 2021, https://doi.org/10.1007/s42770-021-00451-0