DOI QR코드

DOI QR Code

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R. (National Research Centre, Engineering Research Division, Chemical Engineering and Pilot Plant Department) ;
  • Sorour, Mohamed H. (National Research Centre, Engineering Research Division, Chemical Engineering and Pilot Plant Department) ;
  • Shaalan, Hayam F. (National Research Centre, Engineering Research Division, Chemical Engineering and Pilot Plant Department) ;
  • Hani, Heba A. (National Research Centre, Engineering Research Division, Chemical Engineering and Pilot Plant Department)
  • Received : 2016.10.25
  • Accepted : 2017.10.09
  • Published : 2018.01.25

Abstract

Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Keywords

Acknowledgement

Grant : Technological and Engineering Development for Production of Desalination Hollow Fiber Membranes

References

  1. Ahmad, A.L., Abdulkarim, A.A., Ooi, B.S. and Ismail, S. (2013), "Review recent development in additives modifications of polyethersulfone membrane for flux enhancement", Chem. Eng. J., 223, 246-267. https://doi.org/10.1016/j.cej.2013.02.130
  2. Alsalhy, Q.F., Salih, H.A., Simone, S., Zablouk, M., Drioli, E. and Figoli, A. (2014), "Polyethersulfone (PES) hollow-fiber membranes prepared from various spinning parameters", Desalination, 345, 21-35. https://doi.org/10.1016/j.desal.2014.04.029
  3. Amirilargani, M., Sadrzadeh, M. and Mohammadi, T. (2010), "Synthesis and characterization of polyethersulfone membranes", J. Polym. Res., 17(3), 363-377. https://doi.org/10.1007/s10965-009-9323-6
  4. Arahman, N., Arifin, B., Mulyati, S., Ohmukai, Y. and Matsuyama, H. (2012), "Structure change of polyethersulfone hollow fiber membrane modified with pluronic F127, polyvinylpyrrolidone, and tetronic 1307", Mater. Sci. Appl., 3(2), 72-77.
  5. Basile, A. and Gallucci, F. (2010), Membranes for Membrane Reactors: Preparation, Optimization and Selection, John Wiley & Sons.
  6. Bolong, N., Ismail, A.F., Salim, M.R., Rana, D. and Matsuura, T. (2009), "Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water", J. Membr. Sci., 331(1), 40-49. https://doi.org/10.1016/j.memsci.2009.01.008
  7. Bonyadi, S. and Chung, T. (2009), "Highly porous and macrovoidfree PVDF hollow fibre membranes for membrane distillation by a solvent-dope solution co-extrusion approach" J. Membr. Sci., 331(1), 66-74. https://doi.org/10.1016/j.memsci.2009.01.014
  8. Bowen, W.R., Mohammad, A.W. and Hilail, N. (1997), "Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy", J. Membr. Sci., 126(1), 91-105. https://doi.org/10.1016/S0376-7388(96)00276-1
  9. Cabasso, I., Klein, E. and Smith, J. (1977), "Polysulfone hollow fibers. II. Morphology", J. Appl. Polym. Sci., 21(1), 165-180. https://doi.org/10.1002/app.1977.070210115
  10. Carvalho, L.M.J. and Silva, C.A.B. (2010), "Clarification of pineapple juice by microfiltration", Food Sci. Technol., 30(3), 823-832.
  11. Chung, T.S. and Hu, X. (1997), "The effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers", J. Appl. Polym. Sci., 66(6), 1067-1077. https://doi.org/10.1002/(SICI)1097-4628(19971107)66:6<1067::AID-APP7>3.0.CO;2-G
  12. Chung, T.S., Qin, J.J. and Gua, J. (2000), "Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersulfone hollow fiber membranes", Chem. Eng. Sci., 55(6), 1077-1091. https://doi.org/10.1016/S0009-2509(99)00371-1
  13. Chung, T.S.N. (2008), Fabrication of Hollow-Fiber Membranes by Phase Inversion, in Advanced Membrane Technology and Applications, John Wiley& Sons, Inc., Hoboken, New Jersey, U.S.A.
  14. Dot, S., and Hamanaka, K. (1991), "Pore size control technique in the spinning of polysulfone hollow fiber ultrafiltration membranes", Desalination, 80(2), 167-180. https://doi.org/10.1016/0011-9164(91)85156-O
  15. Drioli E., Ali, A., Simone, S., Macedonio, F., AL-Jlil, S.A., Al Shabonah, F.S., Al-Romaih, H.S., Al-Harbi, O., Figoli, A. and Criscuoli, A. (2013), "Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications", Sep. Purif. Technol., 115, 27-38. https://doi.org/10.1016/j.seppur.2013.04.040
  16. Feng, C.S., Shi, B., Li, G. and Wu, Y. (2004), "Preparation and properties of microporous membrane from poly(vinylidene fluoride cotetrafluoroethylene) (F2.4) for membrane distillation", J. Membr. Sci., 237(1), 15-24. https://doi.org/10.1016/j.memsci.2004.02.007
  17. Feng, C.Y., Khulbe, K.C., Matsuura, T. and Ismail, A.F. (2013), "Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications", Sep. Purif. Technol., 111, 43-71. https://doi.org/10.1016/j.seppur.2013.03.017
  18. Gholami, M., Nasseri, S., Feng, C.Y., Matsuura, T. and Khulbe, K.C. (2003), "The effect of heat treatment on the ultrafiltration performance of polyethersulfone (PES) hollow-fiber membranes", Desalination, 155 (3), 293-301. https://doi.org/10.1016/S0011-9164(03)00307-2
  19. Han, M.J. and Nam, S.T. (2002), "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202(1), 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9
  20. Khulbe, K.C., Feng, C., Matsuura, T., Kapantaidakis, G.C., Wessling, M. and Koops, G.H. (2003), "Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopyand contact angle goniometry", J. Membr. Sci., 226(1), 63-73. https://doi.org/10.1016/j.memsci.2003.08.011
  21. Kumar, R.S., Arthanareeswaran, G., Paul, D. and Kweon, J.H. (2015), "Modification methods of polyethersulfone membranes for minimizing fouling-Review", Membr. Water Treat., 6(4), 323-337. https://doi.org/10.12989/mwt.2015.6.4.323
  22. Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N. (2013), "A review on membrane fabrication: Structure, properties and performance relationship", Desalination, 326, 77-95. https://doi.org/10.1016/j.desal.2013.06.016
  23. Lee, K.W., Seo, B.K., Nam, S.T. and Han, M.J. (2003), "Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes", Desalination, 159(3), 289-296. https://doi.org/10.1016/S0011-9164(03)90081-6
  24. Liu, Y., Koops, G.H. and Strathmann, H. (2003), "Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore fluid solution", J. Membr. Sci., 223(1), 187-199. https://doi.org/10.1016/S0376-7388(03)00322-3
  25. Mansoori, S.A.A., Pakizeh, M. and Chenar, M.P. (2011), "Effect of synthesis parameters on structural characteristics of polysulfone membrane and its gas separation properties", J. Membr. Sci. Technol., 1, 1-7.
  26. Mustaffar, M.I., Ismail, A.F. and Illias R.M. (2005), "Study on the effect of polymer concentration on hollow fiber ultrafiltration membrane", Proceedings of the Regional Conference on Engineering Education, Johor, Malaysia, December.
  27. Ochoa, N.A., Pradanos, P. Palacio, L., Pagliero, C., Marchese, J. and Hernandez, A. (2001), "Pore size distributions based on AFM imaging and retention of multi-disperse polymer solutes: Characterization of polyethersulfone UF membranes with dopes containing different PVP", J. Membr. Sci., 187(1), 227-237. https://doi.org/10.1016/S0376-7388(01)00348-9
  28. Peng, N., Widjojo, N., Sukitpaneenit, P., Teoh, M.M., Lipscomb, G.G., Chung, T.S. and Lai, J.Y. (2012), "Evolution of polymeric hollow fibers as sustainable technologies: Past, present and future", Prog. Polym. Sci., 37(10), 1401-1424. https://doi.org/10.1016/j.progpolymsci.2012.01.001
  29. Qin, J. and Chung, T.S. (1999), "Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fiber membranes", J. Membr. Sci., 157(1), 35-51. https://doi.org/10.1016/S0376-7388(98)00361-5
  30. Rahimpour, A., Jahanshahi, M., Khalili, S., Mollahosseini, A., Zirepour, A. and Rajaeian, B. (2012), "Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane", Desalination, 286, 99-107. https://doi.org/10.1016/j.desal.2011.10.039
  31. Simone S., Figoli, A., Criscuoli, A., Carnevale, M.C., Rosselli, A. and Drioli, E. (2010), "Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD", J. Membr. Sci., 364(1), 219-232. https://doi.org/10.1016/j.memsci.2010.08.013
  32. Wan, C.F. and Chung, T.S. (2015), "Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater brine as the feed", J. Membr. Sci., 479, 148-158. https://doi.org/10.1016/j.memsci.2014.12.036
  33. Wan, C.F., Li, B., Yang, T. and Chung, T.S. (2017), "Design and fabrication of inner-selective thin film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)", Sep. Purif. Technol., 172, 32-42. https://doi.org/10.1016/j.seppur.2016.08.001
  34. Wang, K. Y., Matsuura, T., Chung, T.S. and Guo, W.F. (2004), "The effects of flow angle and shear rate within the spinneret on the separation performance of poly (ethersulfone) (PES) ultrafiltration hollow fiber membranes", J. Membr. Sci., 240(1), 67-79. https://doi.org/10.1016/j.memsci.2004.04.012
  35. Zhang, S., Sukitpaneenit, P. and Chung, T.S. (2014), "Design of robust hollow fiber membranes with high power density for osmotic energy production", J. Chem. Eng., 241, 457-465. https://doi.org/10.1016/j.cej.2013.10.063
  36. Zhao, C., Xue, J., Ran, F. and Sun, S. (2013), "Modification of polyethersulfone membranes-A review of methods", Prog. Mater. Sci., 58(1), 76-150. https://doi.org/10.1016/j.pmatsci.2012.07.002