Fig. 1. Overview of macroautophagy. Upon induction of autophagy by stress, cytoplasmic materials are sequestered by a double-membraned structure, called an autophagosome. These autophagosomes fuse with lysosomes to become autolysosomes, in which thesequestered cargos are degraded and recycled for the maintenance of cellular homeostasis.
Fig. 2. Autophagy is a convergent mechanism of multiple longevi-ty paradigms. Autophagic activity is commonly elevated in manylong-lived animals and is essential for their longevity, suggestingthat autophagy is one of convergent mechanisms mediatingdifferent longevity paradigms.
Table 1. Longevity through activation of autophagy
참고문헌
- Alvers, A.L., Fishwick, L.K., Wood, M.S., Hu, D., Chung, H.S., Dunn, W.A., Jr., and Aris, J.P. (2009a). Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8, 353-369. https://doi.org/10.1111/j.1474-9726.2009.00469.x
- Alvers, A.L., Wood, M.S., Hu, D., Kaywell, A.C., Dunn, W.A., Jr., and Aris, J.P. (2009b). Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847-849. https://doi.org/10.4161/auto.8824
- Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P.S., and Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18, 3004-3009. https://doi.org/10.1101/gad.1255404
- Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., and Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35-46. https://doi.org/10.1016/j.cmet.2009.11.010
- Chan, S.N., and Tang, B.L. (2013). Location and membrane sources for autophagosome formation - from ER-mitochondria contact sites to Golgi-endosome-derived carriers. Mol. Membr. Biol. 30, 394-402. https://doi.org/10.3109/09687688.2013.850178
- Chang, J.T., Kumsta, C., Hellman, A.B., Adams, L.M., and Hansen, M. (2017). Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife 6.
- Del Roso, A., Vittorini, S., Cavallini, G., Donati, A., Gori, Z., Masini, M., Pollera, M., and Bergamini, E. (2003). Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp. Gerontol. 38, 519-527. https://doi.org/10.1016/S0531-5565(03)00002-0
- Donati, A., Cavallini, G., Paradiso, C., Vittorini, S., Pollera, M., Gori, Z., and Bergamini, E. (2001). Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J. Gerontol. A Biol. Sci. Med. Sci. 56, B375-383. https://doi.org/10.1093/gerona/56.9.B375
- Egan, D.F., Shackelford, D.B., Mihaylova, M.M., Gelino, S., Kohnz, R.A., Mair, W., Vasquez, D.S., Joshi, A., Gwinn, D.M., Taylor, R., et al. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461. https://doi.org/10.1126/science.1196371
- Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., et al. (2009). Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305-U1102. https://doi.org/10.1038/ncb1975
- Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., Pendl, T., Harger, A., Schipke, J., Zimmermann, A., Schmidt, A., et al. (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428-1438. https://doi.org/10.1038/nm.4222
- Fang, E.F., Waltz, T.B., Kassahun, H., Lu, Q., Kerr, J.S., Morevati, M., Fivenson, E.M., Wollman, B.N., Marosi, K., Wilson, M.A., et al. (2017). Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 7, 46208. https://doi.org/10.1038/srep46208
- Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., and Yoshimori, T. (2008). An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651-4659. https://doi.org/10.1091/mbc.E08-03-0312
- Fullgrabe, J., Klionsky, D.J., and Joseph, B. (2014). The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15, 65-74.
- Gelino, S., Chang, J.T., Kumsta, C., She, X.Y., Davis, A., Nguyen, C., Panowski, S., and Hansen, M. (2016). Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. Plos Genet. 12.
- Giblin, W., Skinner, M.E., and Lombard, D.B. (2014). Sirtuins: guardians of mammalian healthspan. Trends Genet. 30, 271-286. https://doi.org/10.1016/j.tig.2014.04.007
- Greer, E.L., and Brunet, A. (2009). Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113-127. https://doi.org/10.1111/j.1474-9726.2009.00459.x
- Gupta, V.K., Scheunemann, L., Eisenberg, T., Mertel, S., Bhukel, A., Koemans, T.S., Kramer, J.M., Liu, K.S.Y., Schroeder, S., Stunnenberg, H.G., et al. (2013). Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453-1460. https://doi.org/10.1038/nn.3512
- Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al. (2013). Autophagosomes form at ER-mitochondria contact sites. Nature 495, 389-393. https://doi.org/10.1038/nature11910
- Hansen, M., Taubert, S., Crawford, D., Libina, N., Lee, S.J., and Kenyon, C. (2007). Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95-110. https://doi.org/10.1111/j.1474-9726.2006.00267.x
- Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. Plos Genet. 4, e24. https://doi.org/10.1371/journal.pgen.0040024
- Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392-395. https://doi.org/10.1038/nature08221
- Heestand, B.N., Shen, Y., Liu, W., Magner, D.B., Storm, N., Meharg, C., Habermann, B., and Antebi, A. (2013). Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. Plos Genet. 9, e1003651. https://doi.org/10.1371/journal.pgen.1003651
- Hur, J.H., Cho, J., and Walker, D.W. (2010). Aging: dial M for mitochondria. Aging (Albany NY) 2, 69-73.
- Jia, K.L., and Levine, B. (2007). Autophagy is required for dietary restriction-mediated life span extension in C-elegans. Autophagy 3, 597-599. https://doi.org/10.4161/auto.4989
- Jia, K.L., Thomas, C., Akbar, M., Sun, Q.H., Adams-Huet, B., Gilpin, C., and Levine, B. (2009). Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signalingregulated pathogen resistance. Proc. Natl. Acad. Sci. USA 106, 14564-14569. https://doi.org/10.1073/pnas.0813319106
- Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
- Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
- Kirchman, P.A., Kim, S., Lai, C.Y., and Jazwinski, S.M. (1999). Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179-190.
- Lamming, D.W., Ye, L., Sabatini, D.M., and Baur, J.A. (2013). Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 123, 980-989. https://doi.org/10.1172/JCI64099
- Lapierre, L.R., Gelino, S., Melendez, A., and Hansen, M. (2011). Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr. Biol. 21, 1507-1514. https://doi.org/10.1016/j.cub.2011.07.042
- Lapierre, L.R., De Magalhaes Filho, C.D., McQuary, P.R., Chu, C.C., Visvikis, O., Chang, J.T., Gelino, S., Ong, B., Davis, A.E., Irazoqui, J.E., et al. (2013). The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4, 2267.
- Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NADdependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379. https://doi.org/10.1073/pnas.0712145105
- Liu, N., Landreh, M., Cao, K.J., Abe, M., Hendriks, G.J., Kennerdell, J.R., Zhu, Y.Q., Wang, L.S., and Bonini, N.M. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482, 519-U240. https://doi.org/10.1038/nature10810
- Mair, W., and Dillin, A. (2008). Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727-754. https://doi.org/10.1146/annurev.biochem.77.061206.171059
- Matecic, M., Smith, D.L., Pan, X., Maqani, N., Bekiranov, S., Boeke, J.D., and Smith, J.S. (2010). A microarray-based genetic screen for yeast chronological aging factors. Plos Genet. 6, e1000921. https://doi.org/10.1371/journal.pgen.1000921
- Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391. https://doi.org/10.1126/science.1087782
- Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830. https://doi.org/10.1038/ncb0910-823
- Morselli, E., Maiuri, M.C., Markaki, M., Megalou, E., Pasparaki, A., Palikaras, K., Criollo, A., Galluzzi, L., Malik, S.A., Vitale, I., et al. (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 1.
- Morselli, E., Marino, G., Bennetzen, M.V., Eisenberg, T., Megalou, E., Schroeder, S., Cabrera, S., Benit, P., Rustin, P., Criollo, A., et al. (2011). Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615-629. https://doi.org/10.1083/jcb.201008167
- Nakamura, S., and Yoshimori, T. (2017). New insights into autophagosome-lysosome fusion. J. Cell Sci. 130, 1209-1216. https://doi.org/10.1242/jcs.196352
- Nakamura, S., Karalay, O., Jager, P.S., Horikawa, M., Klein, C., Nakamura, K., Latza, C., Templer, S.E., Dieterich, C., and Antebi, A. (2016). Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nat. Commun. 7, 10944. https://doi.org/10.1038/ncomms10944
- Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015). Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525-528. https://doi.org/10.1038/nature14300
- Park, S., Mori, R., and Shimokawa, I. (2013). Do sirtuins promote mammalian longevity? A critical review on its relevance to the longevity effect induced by calorie restriction. Mol. Cells 35, 474-480. https://doi.org/10.1007/s10059-013-0130-x
- Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., and Jung, Y.K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4.
- Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695. https://doi.org/10.1016/j.cell.2011.07.030
- Ryu, D., Mouchiroud, L., Andreux, P.A., Katsyuba, E., Moullan, N., Nicolet-dit-Felix, A.A., Williams, E.G., Jha, P., Lo Sasso, G., Huzard, D., et al. (2016). Urolithin A induces mitophagy and prolongs lifespan in C-elegans and increases muscle function in rodents. Nat. Med. 22, 879-888. https://doi.org/10.1038/nm.4132
- Sardiello, M., Palmieri, M., di Ronza, A., Medina, D.L., Valenza, M., Gennarino, V.A., Di Malta, C., Donaudy, F., Embrione, V., Polishchuk, R.S., et al. (2009). A gene network regulating lysosomal biogenesis and function. Science 325, 473-477.
- Schiavi, A., Torgovnick, A., Kell, A., Megalou, E., Castelein, N., Guccini, I., Marzocchella, L., Gelino, S., Hansen, M., Malisan, F., et al. (2013). Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp. Gerontol. 48, 191-201. https://doi.org/10.1016/j.exger.2012.12.002
- Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., Torgovnick, A., Castelein, N., De Henau, S., Braeckman, B.P., et al. (2015). Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon Mitochondrial Stress in C. elegans. Curr. Biol. 25, 1810-1822. https://doi.org/10.1016/j.cub.2015.05.059
- Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. https://doi.org/10.1126/science.1204592
- Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. (2013a). TFEB controls cellular lipid metabolism through a starvationinduced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
- Settembre, C., Fraldi, A., Medina, D.L., and Ballabio, A. (2013b). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283-296. https://doi.org/10.1038/nrm3565
- Sheaffer, K.L., Updike, D.L., and Mango, S.E. (2008). The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr. Biol. 18, 1355-1364. https://doi.org/10.1016/j.cub.2008.07.097
- Simonsen, A., Cumming, R.C., Brech, A., Isakson, P., Schubert, D.R., and Finley, K.D. (2008). Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176-184. https://doi.org/10.4161/auto.5269
- Smith, D.L., Jr., McClure, J.M., Matecic, M., and Smith, J.S. (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6, 649-662. https://doi.org/10.1111/j.1474-9726.2007.00326.x
- Tang, F., Watkins, J.W., Bermudez, M., Gray, R., Gaban, A., Portie, K., Grace, S., Kleve, M., and Craciun, G. (2008). A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery. Autophagy 4, 874-886. https://doi.org/10.4161/auto.6556
- Toth, M.L., Sigmond, T., Borsos, E., Barna, J., Erdelyi, P., Takacs-Vellai, K., Orosz, L., Kovacs, A.L., Csikos, G., Sass, M., et al. (2008). Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330-338. https://doi.org/10.4161/auto.5618
- Uddin, M.N., Nishio, N., Ito, S., Suzuki, H., and Isobe, K. (2012). Autophagic activity in thymus and liver during aging. Age 34, 75-85. https://doi.org/10.1007/s11357-011-9221-9
- Ulgherait, M., Rana, A., Rera, M., Graniel, J., and Walker, D.W. (2014). AMPK modulates tissue and organismal aging in a non-cellautonomous manner. Cell Rep. 8, 1767-1780. https://doi.org/10.1016/j.celrep.2014.08.006
- Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Muller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620.
- Wang, M.C., O'Rourke, E.J., and Ruvkun, G. (2008). Fat metabolism links germline stem cells and longevity in C. elegans. Science 322, 957-960. https://doi.org/10.1126/science.1162011
- Wang, C., Niederstrasser, H., Douglas, P.M., Lin, R., Jaramillo, J., Li, Y., Olswald, N.W., Zhou, A., McMillan, E.A., Mendiratta, S., et al. (2017). Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun. 8, 2270. https://doi.org/10.1038/s41467-017-02332-3
- Wilhelm, T., Byrne, J., Medina, R., Kolundzic, E., Geisinger, J., Hajduskova, M., Tursun, B., and Richly, H. (2017). Neuronal inhibition of the autophagy nucleation complex extends life span in postreproductive C. elegans. Genes Dev. 31, 1561-1572. https://doi.org/10.1101/gad.301648.117
- Yang, J.R., Chen, D.P., He, Y.N., Melendez, A., Feng, Z., Hong, Q., Bai, X.Y., Li, Q.G., Cai, G.Y., Wang, J.Z., et al. (2013). MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age 35, 11-22. https://doi.org/10.1007/s11357-011-9324-3
피인용 문헌
- What We Learned From Big Data for Autophagy Research vol.6, pp.2296-634X, 2018, https://doi.org/10.3389/fcell.2018.00092
- Hallmarks of Aging: An Autophagic Perspective vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00790
- Molecular mechanisms regulating lifespan and environmental stress responses vol.38, pp.1, 2018, https://doi.org/10.1186/s41232-018-0080-y
- Overview of the Minireviews on Autophagy vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0400
- NADPH Oxidases and Mitochondria in Vascular Senescence vol.19, pp.5, 2018, https://doi.org/10.3390/ijms19051327
- Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species vol.24, pp.6, 2018, https://doi.org/10.1016/j.celrep.2018.07.007
- Autophagy in Age-Associated Neurodegeneration vol.7, pp.5, 2018, https://doi.org/10.3390/cells7050037
- Targeting Autophagy in Aging and Aging-Related Cardiovascular Diseases vol.39, pp.12, 2018, https://doi.org/10.1016/j.tips.2018.10.005
- 6-Bromoindirubin-3′-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver vol.10, pp.None, 2019, https://doi.org/10.3389/fphar.2019.00320
- mTOR: A Cellular Regulator Interface in Health and Disease vol.8, pp.1, 2018, https://doi.org/10.3390/cells8010018
- Is Autophagy Involved in the Diverse Effects of Antidepressants? vol.8, pp.1, 2018, https://doi.org/10.3390/cells8010044
- Influence of Normal Aging on Brain Autophagy: A Complex Scenario vol.11, pp.None, 2018, https://doi.org/10.3389/fnagi.2019.00049
- Chemical Screening Approaches Enabling Drug Discovery of Autophagy Modulators for Biomedical Applications in Human Diseases vol.7, pp.None, 2019, https://doi.org/10.3389/fcell.2019.00038
- Senotherapeutics: emerging strategy for healthy aging and age-related disease vol.52, pp.1, 2018, https://doi.org/10.5483/bmbrep.2019.52.1.293
- Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan? vol.65, pp.3, 2019, https://doi.org/10.1007/s00294-019-00936-4
- Novel Genetic Locus of Visceral Fat and Systemic Inflammation vol.104, pp.9, 2018, https://doi.org/10.1210/jc.2018-02656
- Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans vol.20, pp.19, 2018, https://doi.org/10.3390/ijms20194662
- miR-762 modulates thyroxine-induced cardiomyocyte hypertrophy by inhibiting Beclin-1 vol.66, pp.3, 2019, https://doi.org/10.1007/s12020-019-02048-y
- Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
- Nitrative Stress-Related Autophagic Insufficiency Participates in Hyperhomocysteinemia-Induced Renal Aging vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/4252047
- Editorial: Autophagy and Ageing: Ideas, Methods, Molecules vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00141
- Telomeres and Telomerase in Heart Ontogenesis, Aging and Regeneration vol.9, pp.2, 2020, https://doi.org/10.3390/cells9020503
- Vascular Calcification—New Insights into Its Mechanism vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082685
- Precision Medicine in Lifestyle Medicine: The Way of the Future? vol.14, pp.2, 2020, https://doi.org/10.1177/1559827619834527
- Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation vol.21, pp.16, 2018, https://doi.org/10.3390/ijms21165708
- Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence vol.9, pp.10, 2018, https://doi.org/10.3390/cells9102229
- The Aging Stress Response and Its Implication for AMD Pathogenesis vol.21, pp.22, 2020, https://doi.org/10.3390/ijms21228840
- Isobacachalcone induces autophagy and improves the outcome of immunogenic chemotherapy vol.11, pp.11, 2020, https://doi.org/10.1038/s41419-020-03226-x
- A natural product solution to aging and aging-associated diseases vol.216, pp.None, 2018, https://doi.org/10.1016/j.pharmthera.2020.107673
- A Bioactive compound Shatavarin IV-mediated longevity as revealed by dietary restriction-induced autophagy in Caenorhabditis elegans vol.21, pp.6, 2018, https://doi.org/10.1007/s10522-020-09897-5
- The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity vol.10, pp.1, 2018, https://doi.org/10.3390/cells10010079
- Experimental Validation of Novel Glypican 3 Exosomes for the Detection of Hepatocellular Carcinoma in Liver Cirrhosis vol.8, pp.None, 2018, https://doi.org/10.2147/jhc.s327339
- TFEB: A Emerging Regulator in Lipid Homeostasis for Atherosclerosis vol.12, pp.None, 2018, https://doi.org/10.3389/fphys.2021.639920
- Quality Matters? The Involvement of Mitochondrial Quality Control in Cardiovascular Disease vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.636295
- SIRT6 in Senescence and Aging-Related Cardiovascular Diseases vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.641315
- Autophagy and Aging: Roles in Skeletal Muscle, Eye, Brain and Hepatic Tissue vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.752962
- Cellular Senescence in Brain Aging vol.13, pp.None, 2018, https://doi.org/10.3389/fnagi.2021.646924
- Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and d-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging vol.22, pp.1, 2018, https://doi.org/10.1007/s10522-020-09900-z
- Lysosomal Functions in Glia Associated with Neurodegeneration vol.11, pp.3, 2018, https://doi.org/10.3390/biom11030400
- Ferulic Acid Supplementation Increases Lifespan and Stress Resistance via Insulin/IGF-1 Signaling Pathway in C. elegans vol.22, pp.8, 2018, https://doi.org/10.3390/ijms22084279
- Maternal high sugar and fat diet benefits offspring brain function via targeting on the gut-brain axis vol.13, pp.7, 2021, https://doi.org/10.18632/aging.202787
- Translational control of gene expression by eIF2 modulates proteostasis and extends lifespan vol.13, pp.8, 2018, https://doi.org/10.18632/aging.203018
- New Molecular Targets for Antidepressant Drugs vol.14, pp.9, 2018, https://doi.org/10.3390/ph14090894
- Genetic characteristics of Bursaphelenchus xylophilus third-stage dispersal juveniles vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-82343-9
- Spermidine induces cytoprotective autophagy of female germline stem cells in vitro and ameliorates aging caused by oxidative stress through upregulated sequestosome-1/p62 expression vol.11, pp.1, 2018, https://doi.org/10.1186/s13578-021-00614-4
- Graptopetalum paraguayense Extract Ameliorates Proteotoxicity in Aging and Age-Related Diseases in Model Systems vol.13, pp.12, 2018, https://doi.org/10.3390/nu13124317
- 3,3’-Diindolylmethane induces apoptosis and autophagy in fission yeast vol.16, pp.12, 2018, https://doi.org/10.1371/journal.pone.0255758