DOI QR코드

DOI QR Code

Development of Research into Autophagic Lysosome Reformation

  • Chen, Yang (State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University) ;
  • Yu, Li (State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University)
  • Received : 2017.10.23
  • Accepted : 2017.11.30
  • Published : 2018.01.31

Abstract

Autophagy is a lysosome-dependent degradation process that is essential for maintaining cellular homeostasis. In recent years, more studies have focused on the late stages of autophagy. Our group discovered and studied the terminal step of autophagy, namely autophagic lysosome reformation (ALR). ALR is the process that regenerates functional lysosomes from autolysosomes, thus maintaining lysosome homeostasis. ALR involves clathrin-mediated membrane budding from autolysosomes, elongation of membrane tubules along microtubules with the pulling force provided by the motor protein KIF5B, proto-lysosome scission by dynamin 2, and finally maturation of proto-lysosomes to functional lysosomes. In this review, we will summarize progress in unveiling the molecular mechanisms underlying ALR and its potential pathophysiological roles.

Keywords

E1BJB7_2018_v41n1_45_f0001.png 이미지

Fig. 1. Schematic illustration of the correlation between mTORactivity and autophagy during starvation.

E1BJB7_2018_v41n1_45_f0002.png 이미지

Fig. 2. Schematic illustration of the process of ALR involving clathrin-mediated membrane budding from autolysosomes, elongation ofmembrane tubules along microtubules by the motor protein KIF5B and proto-lysosome scission by dynamin 2.

References

  1. Chang, J., Lee, S., and Blackstone, C. (2014). Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Invest. 124, 5249-5262. https://doi.org/10.1172/JCI77598
  2. Chen, Y., and Yu, L. (2015). Scissors for autolysosome tubules. EMBO J. 34, 2217-2218. https://doi.org/10.15252/embj.201592519
  3. Chen, R., Zou, Y., Mao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., Ye, W., et al., (2014). The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. J. Cell Biol. 206, 173-182. https://doi.org/10.1083/jcb.201403009
  4. Du, W., Su, Q.P., Chen, Y., Zhu, Y., Jiang, D., Rong, Y., Zhang, S., Zhang, Y., Ren, H., Zhang, C., et al. (2016). Kinesin 1 drives autolysosome tubulation. Dev. Cell 37, 326-336. https://doi.org/10.1016/j.devcel.2016.04.014
  5. Kirchhausen, T. (2000). Clathrin. Annu. Rev. Biochem. 69, 699-727. https://doi.org/10.1146/annurev.biochem.69.1.699
  6. Magalhaes, J., Gegg, M.E., Migdalska-Richards, A., Doherty, M.K., Whitfield, P.D., and Schapira, A.H. (2016). Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum. Mol. Genet. 25, 3432-3445. https://doi.org/10.1093/hmg/ddw185
  7. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
  8. Munson, M.J., Allen, G.F., Toth, R., Campbell, D.G., Lucocq, J.M., and Ganley, I.G. (2015). mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 34, 2272-2290. https://doi.org/10.15252/embj.201590992
  9. Rong, Y., McPhee, C.K., Deng, S., Huang, L., Chen, L., Liu, M., Tracy, K., Baehrecke, E.H., Yu L., and Lenardo, M.J. (2011). Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. USA 108, 7826-7831. https://doi.org/10.1073/pnas.1013800108
  10. Rong, Y., Liu, M., Ma, L., Du, W., Zhang, H., Tian, Y., Cao, Z., Li, Y., Ren, H., Zhang, C., et al., (2012). Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14, 924-934. https://doi.org/10.1038/ncb2557
  11. Rubinsztein, D.C., Shpilka, T. and Elazar, Z. (2012). Mechanisms of autophagosome biogenesis. Curr. Biol. 22, R29-34. https://doi.org/10.1016/j.cub.2011.11.034
  12. Schulze, R.J., Weller, S.G., Schroeder, B., Krueger, E.W., Chi, S., Casey, C.A., and McNiven, M.A. (2013). Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315-326. https://doi.org/10.1083/jcb.201306140
  13. Sridhar, S., Patel, B., Aphkhazava, D., Macian, F., Santambrogio, L., Shields, D., and Cuervo, A.M. (2013). The lipid kinase PI4KIIIbeta preserves lysosomal identity. EMBO J. 32, 324-339.
  14. Su, Q.P., Du, W., Ji, Q., Xue, B., Jiang, D., Zhu, Y., Lou, J., Yu, L., and Sun, Y. (2016). Vesicle size regulates nanotube formation in the cell. Sci. Rep. 6, 24002. https://doi.org/10.1038/srep24002
  15. Varga, R.E., Khundadze, M., Damme, M., Nietzsche, S., Hoffmann, B., Stauber, T., Koch, N., Hennings, J.C., Franzka, P., Huebner, A.K., et al. (2015). In vivo evidence for lysosome depletion and impaired autophagic clearance in hereditary spastic paraplegia type SPG11. PLoS Genet. 11, e1005454. https://doi.org/10.1371/journal.pgen.1005454
  16. Wang, C., Du, W., Su, Q.P., Zhu, M., Feng, P., Li, Y., Zhou, Y., Mi, N., Zhu, Y., Jiang, D., et al., (2015). Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 25, 1108-1120. https://doi.org/10.1038/cr.2015.89
  17. Warnock, D.E., Baba, T., and Schmid, S.L. (1997). Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol. Biol. Cell. 8, 2553-2562. https://doi.org/10.1091/mbc.8.12.2553
  18. Yang, Z., and Klionsky, D.J. (2010). Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131. https://doi.org/10.1016/j.ceb.2009.11.014
  19. Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946. https://doi.org/10.1038/nature09076
  20. Zhang, J.Q., Zhou, W., Zhu, S.S., Lin, J., Wei, P.F., Li, F.F., Jin, P.P., Yao, H., Zhang, Y.J., Hu, Y., et al. (2017). Persistency of enlarged autolysosomes underscores nanoparticle-induced autophagy in hepatocytes. Small 13.

Cited by

  1. Overview of the Minireviews on Autophagy vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0400
  2. Allele-Specific CRISPR/Cas9 Correction of a Heterozygous DNM2 Mutation Rescues Centronuclear Myopathy Cell Phenotypes vol.16, pp.None, 2019, https://doi.org/10.1016/j.omtn.2019.02.019
  3. The Emerging Roles of mTORC1 in Macromanaging Autophagy vol.11, pp.10, 2018, https://doi.org/10.3390/cancers11101422
  4. Lysosomes as a therapeutic target vol.18, pp.12, 2019, https://doi.org/10.1038/s41573-019-0036-1
  5. Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular vol.21, pp.7, 2020, https://doi.org/10.3390/ijms21072576
  6. BHRF1 Enhances EBV Mediated Nasopharyngeal Carcinoma Tumorigenesis through Modulating Mitophagy Associated with Mitochondrial Membrane Permeabilization Transition vol.9, pp.5, 2018, https://doi.org/10.3390/cells9051158
  7. Autophagy in liver diseases vol.13, pp.1, 2018, https://doi.org/10.4254/wjh.v13.i1.6
  8. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer vol.22, pp.18, 2018, https://doi.org/10.3390/ijms22189807
  9. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease vol.11, pp.4, 2018, https://doi.org/10.3233/jpd-212684
  10. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111377
  11. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells vol.17, pp.11, 2018, https://doi.org/10.1080/15548627.2021.1886839
  12. The lysosome as an imperative regulator of autophagy and cell death vol.78, pp.23, 2021, https://doi.org/10.1007/s00018-021-03988-3
  13. mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates autophagosome maturation vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-26824-5