DOI QR코드

DOI QR Code

The Influence of Functionalization of the Fe3O4 Nanoparticle on its Dispersion Property

  • Han, Jin Soon (Division of Materials Science & Engineering, Hanyang University) ;
  • An, Gye Seok (Division of Materials Science & Engineering, Hanyang University) ;
  • Park, Bong Geun (Division of Materials Science & Engineering, Hanyang University) ;
  • Choi, Sung-Churl (Division of Materials Science & Engineering, Hanyang University)
  • Received : 2017.11.08
  • Accepted : 2017.11.13
  • Published : 2018.01.31

Abstract

In this study, to improve the dispersity of $Fe_3O_4$ nanoparticles, dispersion properties were considered with various types of functionalization of $Fe_3O_4$ nanoparticles. Due to its high surface area, the electrically neutral state of its surfaces, and its magnetic momentum, $Fe_3O_4$ nanoparticles are easily aggregated in solution. In order to prevent aggregation, $Fe_3O_4$ nanoparticles were functionalized with carboxyl and amine groups in the form of a polymer compound. Carboxyl and amine groups were attached to the surface of $Fe_3O_4$ nanoparticles and the absolute value of the zeta potential was found to be enhanced by nearly 40 eV. Furthermore, the morphology and the magnetic property were analyzed for the application of $Fe_3O_4$ nanoparticles as a magnetic fluid.

Keywords

References

  1. L. Li, A. Kovalchuk, H. Fei, Z. Peng, Y. Li, N. D. Kim, C. Xiang, Y. Yang, G. Ruan, and J. M. Tour, "Enhanced Cycling Stability of Lithium-Ion Batteries Using Graphene-Wrapped $Fe_3O_4$-Graphene Nanoribbons as Anode Materials," Adv. Energy Mater., 5 [14] 1500171 (2015). https://doi.org/10.1002/aenm.201500171
  2. K. Hayashi, M. Nakamura, W. Sakamoto, T. Yogo, H. Miki, S. Ozaki, M. Abe, T. Matsumoto, and K. Ishimura, "Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment," Theranostics, 3 [6] 366-76 (2013). https://doi.org/10.7150/thno.5860
  3. A. Sukhov, L. Chotorlishvili, P. P. Horley, C.-L. Jia, S. K. Mishra, and J. Berakdar, "On the Superparamagnetic Size Limit of Nanoparticles on a Ferroelectric Substrate," J. Phys. D: Appl. Phys., 47 [15] 155302 (2014). https://doi.org/10.1088/0022-3727/47/15/155302
  4. M. J. Chen, H. Shen, X. Li, and H. F. Liu, "Facile Synthesis of Oil-Soluble $Fe_3O_4$ Nanoparticles Based on a Phase Transfer Mechanism," Appl. Surf. Sci., 307 306-10 (2014). https://doi.org/10.1016/j.apsusc.2014.04.031
  5. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, "Applications of Magnetic Nanoparticles in Biomedicine," J. Phys. D: Appl. Phys., 36 [13] 167-81 (2003). https://doi.org/10.1088/0022-3727/36/13/201
  6. S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S. K. Knauer, and R. H. Stauber, "Rapid Formation of Plasma Protein Corona Critically Affects Nanoparticle Pathophysiology," Nat. Nanotechnol., 8 772-81 (2013). https://doi.org/10.1038/nnano.2013.181
  7. I. Safarik and M. Safarikova, "Magnetic Techniques for the Isolation and Purification of Proteins and Peptides," Biomagn. Res. Technol., 2 [1] 7 (2004). https://doi.org/10.1186/1477-044X-2-7
  8. G. S. An, S. W. Choi, D. H. Chae, H. S. Lee, H. J. Kim, Y. J. Kim, Y. G. Jung, and S. C. Choi, "${\gamma}-Fe_3O_4@SiO_2$ Core-Shell Structured Nanoparticle: Fabrication via Surface Treatment and Application for Plasmid DNA Purification," Ceram. Int., 43 12888-92 (2017). https://doi.org/10.1016/j.ceramint.2017.06.183
  9. S. B. Wee, H. C. Oh, T. G. Kim, G. S. An, and S. C. Choi, "Role of N-methyl-2-pyrrolidone for Preparation of $Fe_3O_4@SiO_2$ controlled the shell thickness, J. Nanopart. Res., 19 143 (2017).
  10. P. Tancredi, S. Botasini, O. Moscoso-Londono, E. Mendez, and L. M. Socolovsky, "Polymer-Assisted Size Control of Water-Dispersible Iron Oxide Nanoparticles in Range between 15 and 100 nm," Colloids Surf., A, 464 45-51 (2015).
  11. Y. Takeno, Y. Murakami, T. Sato, T. Tanigaki, H. S. Park, D. Shindo, R. M. Ferguson, and K. M. Krishnan, "Morphology and Magnetic Flux Distribution in Superparamagnetic Single-Crystalline $Fe_3O_4$ Nanoparticle Rings," Appl. Phys. Lett., 105 183102 (2014). https://doi.org/10.1063/1.4901008
  12. G. S. An, S. W. Choi, T. G. Kim, J. R. Shin, Y. I. Kim, S. C. Choi, and J. G. Jung, "Amino-Functionalization of Colloidal Alumina Particles for Enhancement of the Infiltration Behavior in a Silica-Based Ceramic Core," Ceram. Int., 43 [1] 157-61 (2017). https://doi.org/10.1016/j.ceramint.2016.09.127
  13. G. S. An, J. S. Han, J. U. Hur, and S. C Choi, "Synthesis of Sub-Micro Sized High Purity Zirconium Diboride Powder through Carbothermal and Borothermal Reduction Method," Ceram. Int., 43 [8] 5896-900 (2017). https://doi.org/10.1016/j.ceramint.2017.01.068
  14. Y. V. Kolen'ko, M. Banobre-Lopez, C. Rodriguez-Abreu, E. Carbo-Argibay, A. Sailsman, Y. Pineiro-Redondo, M. F. Cerqueira, D. Y. Petrovykh, K. Kovnir, O. I. Lebedev, and J. Rivas, "Large-Scale Synthesis of Colloidal $Fe_3O_4$ Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia," J. Phys. Chem. A, 118 [16] 8691-701 (2014).

Cited by

  1. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging vol.9, pp.10, 2018, https://doi.org/10.3390/nano9101404
  2. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles vol.281, pp.None, 2018, https://doi.org/10.1016/j.cis.2020.102165
  3. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges vol.11, pp.3, 2021, https://doi.org/10.3390/brainsci11030358