DOI QR코드

DOI QR Code

안면도에서의 초미세먼지 유기성분 주요 영향원 평가

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station

  • 한상희 (이화여자대학교 환경공학과) ;
  • 이지이 (이화여자대학교 환경공학과) ;
  • 이종식 (조선대학교 신재생에너지융합과) ;
  • 허종배 (서울대학교 환경보건학과) ;
  • 정창훈 (경인여자대학교 건강관리학과) ;
  • 김은실 (기상청 지구대기감시센터) ;
  • 김용표 (이화여자대학교 화학신소재공학과)
  • Han, Sanghee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Ji Yi (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Jongsik (Department of Renewable Energy Convergence, Chosun University) ;
  • Heo, Jongbae (Department of Environmental Health, Seoul National University) ;
  • Jung, Chang Hoon (Department of Health Management, Kyungin Women's College) ;
  • Kim, Eun-Sill (Korea Global Atmosphere Watch Center, Korea Meteorological Administration) ;
  • Kim, Yong Pyo (Department of Chemical Engineering & Materials Science, Ewha Womans University)
  • 투고 : 2018.11.06
  • 심사 : 2018.12.22
  • 발행 : 2018.12.31

초록

PMF 수용모델을 사용하여 안면도 측정소에서 2년간 측정한 초미세먼지의 유기성분의 주요 영향원을 파악하였다. 5개 또는 6개의 요인이 최적으로 나타났으며, 6개의 요인이 결과를 더 잘 해석하는 것으로 판단되었다. 이들 요인의 계절별 특성과 영향도 변화를 고려하여 결정한 주요 오염원은 이차유기성분(10.3%), 연소(12.0%), 자연적 생물성 기원(24.8%) 장거리이동식생소각(7.3%), 국지적 생체소각(26.4%), 장거리이동 오염원(19.2%)이다. 안면도 측정소는 배경지역의 특성인 자연적 생물성 기원, 이차유기성분과 장거리이동 오염원의 영향도가 크게 나타나면서도, 비도심의 특성인 국지적 식생소각과 연소 영향도 나타나고 있다. 이는 안면도 측정소에서는 인위적인 영향에 의한 유기성분 특성은 제한적임을 보여준다.

Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

키워드

KKOSBF_2018_v14n4_135_f0001.png 이미지

FIg. 1. Source profiles of each factor for 6 factor case.

KKOSBF_2018_v14n4_135_f0002.png 이미지

Fig. 3. Backward trajectory analysis result for the days of top 10% of Transported BB factor.

KKOSBF_2018_v14n4_135_f0003.png 이미지

Fig. 2. Variation of the relative contribution of each factor for 6 factor case.

Table 1. Analyzed carbonaceous species and organic compounds. The compounds with shade are not used for the modeling.

KKOSBF_2018_v14n4_135_t0001.png 이미지

Table 2. Input data for the PMF modeling study.

KKOSBF_2018_v14n4_135_t0002.png 이미지

Table 3. The value of parameters (IM, IS, DISP(%dQ), and BS) to decide the optimal number of factors.

KKOSBF_2018_v14n4_135_t0003.png 이미지

Table 4. Identified factors and their characteristics for 5 factor case.

KKOSBF_2018_v14n4_135_t0004.png 이미지

Table 5. Identified factors and their characteristics for 6 factor case.

KKOSBF_2018_v14n4_135_t0005.png 이미지

참고문헌

  1. Cheng, Y., Li, S.-M., Leithead, A., Brickell, P.C., and Leaitch, W.R. (2004). Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the lower fraser valley during pacific 2001 air quality study, Atmospheric Environment, 38, 5789-5800. https://doi.org/10.1016/j.atmosenv.2004.01.051
  2. Fraser, M.P., and Lakshmanan, K. (2000). Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols, Environmental Science & Technology, 34, 4560-4564. https://doi.org/10.1021/es991229l
  3. Han, S., Lee, J.Y., Lee, J., Heo, J.-B., Jung, C.H., Kim, E.-S., and Kim Y.P. (2018). Estimation of the source contributions for carbonaceous aerosols at a background site in Korea, Asian Journal of Atmospheric Environment, 12(4), 311-325. https://doi.org/10.5572/ajae.2018.12.4.311
  4. Han, S., Lee, J.Y., Lee, J., Heo, J.-B., and Kim Y.P. (2019). temporal trend of the major contributors for the particulate polycyclic aromatic hydrocarbons (PAHs) in Seoul, Aerosol Air Quality Research, in press.
  5. Heo, J.-B., Hopke, P., and Yi, S.-M. (2009). Source apportionment of PM2.5 in Seoul, Korea, Atmospheric Chemistry and Physics, 9, 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  6. Heo, J., Dulger, M., Olson, M. R., McGinnis, J. E., Shelton, B. R., Matsunage, A., Sioutas, C., and Schauer, J. J. (2013). Source apportionment of PM2.5 organic carbon using molecular marker positive matrix factorization and comparison of results from different receptor models, Atmospheric Environment, 73, 51-61. https://doi.org/10.1016/j.atmosenv.2013.03.004
  7. Jaeckels, J.M., Bae, M.-S., and Schauer, J.J. (2007). Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols, Environmental Science & Technology, 41, 5763-5769. https://doi.org/10.1021/es062536b
  8. Jung, D.B., Cho, Y.S., Kim, I.S., Lee, J.Y., and Kim, Y.P. (2015). Impact of energy consumption in northeast asia to the particulate PAHs levels and composition at Seoul, Aerosol and Air Quality Research, 15, 2190-2199. https://doi.org/10.4209/aaqr.2015.01.0038
  9. Kawamura, K., Kasukabe, H., and Barrie, L.A. (1996). Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations, Atmospheric Environment, 30, 1709-1722. https://doi.org/10.1016/1352-2310(95)00395-9
  10. Kim, I.S., Lee, J.Y., and Kim, Y.P. (2013). Impact of polycyclic aromatic hydrocarbon (pah) emissions from North Korea to the air quality in the seoul metropolitan area, South Korea, Atmospheric Environment, 70, 159-165. https://doi.org/10.1016/j.atmosenv.2012.12.040
  11. Kotianova, P., Puxbaum, H., Bauer, H., Caseiro, A., Marr, I., and Cik, G. (2008). Temporal patterns of n-alkanes at traffic exposed and suburban sites in Vienna, Atmospheric Environment, 42, 2993-3005. https://doi.org/10.1016/j.atmosenv.2007.12.048
  12. Lee, J.Y., and Kim, Y. (2007). Source apportionment of the particulate pahs at Seoul, Korea: Impact of long range transport to a megacity, Atmospheric Chemistry and Physics, 7, 3587-3596. https://doi.org/10.5194/acp-7-3587-2007
  13. Lee, J.Y., Kim, Y.W., Kim, E.S., Kim, S.Y., Lee, H., Yi, S., Kwon, S.H., and Kim, Y.P. (2011). analysis of water soluble organic carbon (WSOC) and n-alkanes for the ambient PM10 in the Anmyon Island, Particle and Aerosol Research, 7, 131-138 (in Korean).
  14. Norris, G., Duvall, R., Brown, S., and Bai, S. (2014). Epa positive matrix factorization (PMF) 5.0 fundamentals and user guide prepared for the us environmental protection agency office of research and development, Washington, DC, DC EPA/600/R-14/108.
  15. Paatero, P., and Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111-126. https://doi.org/10.1002/env.3170050203
  16. Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., and Simoneit, B.R. (1993). Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmospheric Environment. Part A. General Topics, 27, 1309-1330. https://doi.org/10.1016/0960-1686(93)90257-Y
  17. Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., and Simoneit, B.R. (1996). Source apportionment of airborne particulate matter using organic compounds as tracers, Atmospheric Environment, 30, 3837-3855. https://doi.org/10.1016/1352-2310(96)00085-4
  18. Simoneit, B.R. (1985). Application of molecular marker analysis to vehicular exhaust for source reconciliations, International Journal of Environmental Analytical Chemistry, 22, 203-232. https://doi.org/10.1080/03067318508076422
  19. Simoneit, B.R., Sheng, G., Chen, X., Fu, J., Zhang, J., and Xu, Y. (1991). Molecular marker study of extractable organic matter in aerosols from urban areas of China, Atmospheric Environment. Part A. General Topics, 25, 2111-2129. https://doi.org/10.1016/0960-1686(91)90088-O
  20. Zhang, Y., Muller, L., Winterhalter, R., Moortgat, G., Hoffmann, T., and Poschl, U. (2010). Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter, Atmospheric Chemistry and Physics, 10, 7859-7873. https://doi.org/10.5194/acp-10-7859-2010