Figure 1. Schematic diagram showing a shock encountering a hot bubble (green) with low-energy fossil relativistic electrons in the outskirts of a galaxy cluster. Radio-emitting region (pink) behind the shock contains high-energy cosmicray electrons.
Figure 2. Left and Middle panels: Time evolution of a planar shock with Ms,i = 3.0 running in to a hotter bubble with b = nb/nICM = TICM/Tb = 0.5. Here the shock is moving to the right and the boundary between the ICM nd the bubble changes gradually with a hyperbolic tangent profile. The shock speed begins to increase at the third time epoch (dashed lines), but the shock Mach number decreases due to higher sound speed as it enters the hotter bubble. Right panel: Shock Mach number inside the bubble, Ms,b, estimated from Equation (1), versus the initial shock Mach number, Ms,i for b = 1 (green long-dashed line), b = 0.5 (black solid), b = 0.25 (red dashed), b = 0.1 (blue dotted), and b = 0.01 (magenta dotted). The values of Ms,b inferred from 1D hydrodynamic simulations are shown with black filled circles for b = 0.5, red open circles for b = 0.25, and blue filled triangles for b = 0.1.
Figure 3. Initial conditions for the gas density, fossil CR electron density, and magnetic field strength for the model that contains a hotter bubble with b = 0.5. The shock is located at r/r0 = 1.0 at tage = 0. See Section 2.2.2 for the details of Model A (black solid line), B (red dotted line), and C (blue dashed line) for the magnetic field profiles.
Figure 4. Time evolution of Ms,i = 4.0 shocks without (b = 1.0, upper panels) and with (b = 0.5, lower panels) a bubble. The gas density (left panels) and X-ray emissivity (middle panels) are shown at six different time epochs. Right panels: Evolution of the shock speed, us(t)/u0 (black lines, the left-hand axis), and Mach number, Ms(t) (red lines, the right-hand axis) in the two models. Here, r0 = 0.8 Mpc, t0 = 176 Myr, and u0 = 4.4 × 103 km s −1. Inside the bubble the shock speeds up but the Mach number decreases due to the higher sound speed.
Figure 5. Time evolution of Ms,i = 4.0 shocks without (b = 1.0, upper panels) and with (b = 0.5, lower panels) a bubble. Magnetic field strength (left panels), synchrotron emissivity at 150 MHz (middle panels), spectral index, α
Figure 6. Postshock profiles of the surface brightness, Iν(R) at 153 MHz (top panels) in arbitrary units, the spectral index α
Figure 7. Time evolution of volume-integrated radio spectrum for M4.0noA, M4.0Ba, M4.0Bb, and M4.0Bc models are shown at six different time epochs, tage = 88, 106, 123, 141, 159, and 179 Myr as in Figure 5. The three shock ages, tin,at,out, are the same as in Figure 6.
Table 1 Model Parameters for Spherical Shocks
참고문헌
- Akamatsu, H., vanWeeren, R. J., Ogrean, G. A., et al. 2015, Suzaku X-Ray Study of the Double Radio Relic Galaxy Cluster CIZA J2242.8+5301, A&AP, 582, 87 https://doi.org/10.1051/0004-6361/201425209
- Bonafede, A., Feretti, L., Murgia, M., et al. 2010, The Coma Cluster Magnetic Field from Faraday Rotation Measures, A&AP, 513, A30 https://doi.org/10.1051/0004-6361/200913696
- Bonafede, A., Intema, H. T., Bruggen, M., et al. 2014, Evidence for Particle Re-Acceleration in the Radio Relic in the Galaxy Cluster PLCKG287.0+32.9, ApJ, 785, 1 https://doi.org/10.1088/0004-637X/785/1/1
- Brunetti, G., & Jones, T. W. 2014, Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission, Int. J. Mod. Phys. D, 23, 30007
- Brunetti, G., & Lazarian, A. 2007, Compressible Turbulence in Galaxy Clusters: Physics and Stochastic Particle Reacceleration, MNRAS, 378, 245 https://doi.org/10.1111/j.1365-2966.2007.11771.x
- Caprioli, D., & Spitkovsky, A. 2014, Simulations of Ion Acceleration at Non-Relativistic Shocks. I. Acceleration Efficiency, ApJ, 783, 91 https://doi.org/10.1088/0004-637X/783/2/91
- Croston, J. H., & Hardcastle, M. J. 2014, The Particle Content of Low-Power Radio Galaxies in Groups and Clusters, MNRAS, 438, 3310 https://doi.org/10.1093/mnras/stt2436
- Di Gennaro, G., van Weeren, R. J., Hoeft, M., et al. 2018, Depp Vert Large Array Observations of the Merging Cluster CIZA J2242.8+5301: Continuum and Spectral Imaging, ApJ, 865, 24 https://doi.org/10.3847/1538-4357/aad738
- Donnert, J. M. F., Stroe, A., Brunetti, G., Hoang, D., & Roettgering, H. 2016, Magnetic Field Evolution in Giant Radio Relics Using the Example of CIZA J2242.8+5301, MNRAS, 462, 2014 https://doi.org/10.1093/mnras/stw1792
- Drury, L. O'C. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rept. Prog. Phys., 46, 973 https://doi.org/10.1088/0034-4885/46/8/002
- Ensslin, T. A., Biermann, P. L., Kleing, U., & Kohle, S. 1998, Cluster Radio Relics as a Tracer of Shock Waves of the Large-Scale Structure Formation, A&A, 332, 395
- Ensslin, T. A., & Gopal-Krishna. 2001, Reviving Fossil Radio Plasma in Clusters of Galaxies by Adiabatic Compression in Environmental Shock Waves, A&A, 366, 26 https://doi.org/10.1051/0004-6361:20000198
- Fabian, A. C. 2012, Observational Evidence of Active Galactic Nuclei Feedback, ARA&A, 50, 455 https://doi.org/10.1146/annurev-astro-081811-125521
- Fanaroff B. L., & Riley J. M. 1974, The Morphology of Extragalactic Radio Sources of High and Low Luminosity, MNRAS, 167, 31 https://doi.org/10.1093/mnras/167.1.31
- Feretti, L., Giovannini, G., Govoni, F., & Murgia, M. 2012, Clusters of Galaxies: Observational Properties of the Diffuse Radio Emission, A&A Rev, 20, 54 https://doi.org/10.1007/s00159-012-0054-z
- Feretti L., Perley R., Giovannini G., & Andernach, H. 1999, VLA Observations of the Giant Radio Galaxy 3C 449, A&A, 341, 29
- Ghirardini, V., Eckert, D., Ettori, S., et al. 2018, The Universal Thermodynamic Properties of the Intracluster Medium over Two Decades in Radius in the X-COP Sample, arXiv:1805.00035 https://doi.org/10.1051/0004-6361/201833323
- Golovich, N., Dawson, W. A., Wittman, D. M., et al. 2018, Merging Cluster Collaboration: A Panchromatic Atlas of Radio Relic Mergers, arXiv:1806.10619
- Guo, X., Sironi, L., & Narayan, R. 2014, Non-Thermal Electron Acceleration in Low Mach Number Collisionless Shocks. II. Firehose-Mediated Fermi Acceleration and Its Dependence on Pre-Shock Conditions, ApJ, 797, 47 https://doi.org/10.1088/0004-637X/797/1/47
- Hardcastle, M. J., & Sakelliou, I. 2004, Jet Termination in Wide-Angle Tail Radio Sources, MNRAS, 349, 560 https://doi.org/10.1111/j.1365-2966.2004.07522.x
- Hoang, D. N., Shimwell, T. W., van Weeren, R. J., et al. 2018, Radio Observations of the Double-Relic Galaxy Cluster Abell 1240, MNRAS, 478, 2218
- Hong, E. W., Kang, H., & Ryu, D. 2015, Radio and X-Ray Shocks in Clusters Of Galaxies, ApJ, 812, 49 https://doi.org/10.1088/0004-637X/812/1/49
- Ji, S., Oh, S. P., Ruszkowski, M., & Markevitch, M. 2016, The Efficiency of Magnetic Field Amplification at Shocks by Turbulence, MNRAS, 463, 3989 https://doi.org/10.1093/mnras/stw2320
- Kang, H. 2011, Energy Spectrum of Nonthermal Electrons Accelerated at a Plane Shock, JKAS, 44, 49
- Kang, H. 2015, Radio Emission from Weak Spherical Shocks in the Outskirts of Galaxy Clusters, JKAS, 48, 155
- Kang, H. 2016a, Reacceleration Model for the 'Toothbrush' Radio Relic, JKAS, 49, 83
- Kang, H. 2016b, Reacceleration Model for the 'Sausage' Radio Relic, JKAS, 49, 145
- Kang, H. 2017, Shock Acceleration Model with Postshock Turbulence for Giant Radio Relics, JKAS, 50, 93
- Kang, H., & Jones, T. W. 2006, Numerical Studies of Diffusive Shock Acceleration at Spherical Shocks, Astropart. Phys., 25, 246 https://doi.org/10.1016/j.astropartphys.2006.02.006
- Kang, H., Ryu, D., & Jones, T. W. 2012, Diffusive Shock Acceleration Simulations of Radio Relics, ApJ, 756, 97
- Kang, H., Ryu, D., & Jones, T.W. 2017, Shock Acceleration Model for the Toothbrush Radio Relic, ApJ, 840, 42 https://doi.org/10.3847/1538-4357/aa6d0d
- Kang, H., Ryu, D., & Ha, J.-H. 2018, Electron Preacceleration in Weak Quasi-Perpendicular Shocks in High-Beta Intracluster Medium, in preparation
- Laing R. A., & Bridle, A. H. 2002, Relativistic Models and the Jet Velocity Field in the Radio Galaxy 3C 31, MNRAS, 336, 328 https://doi.org/10.1046/j.1365-8711.2002.05756.x
- Laing R. A., & Bridle, A. H. 2013, The Spectra of Jet Bases in FR I Radio Galaxies: Implications for Particle Acceleration, MNRAS, 432, 1114
- McNamara, B. J., & Nulsen, P. E. J. 2007, Heating Hot Atmospheres with Active Galactic Nuclei, ARA&A, 45, 117
- Pinzke, A., Oh, S. P., & Pfrommer, C. 2013, Giant Radio Relics in Galaxy Clusters: Reacceleration of Fossil Relativistic Electrons?, MNRAS, 435, 1061 https://doi.org/10.1093/mnras/stt1308
- Pfrommer, C., & Jones, T. W., 2011, Radio Galaxy NGC 1265 Unveils the Accretion Shock onto the Perseus Galaxy Cluster, ApJ, 730, 22 https://doi.org/10.1088/0004-637X/730/1/22
- Skilling, J. 1975, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557 https://doi.org/10.1093/mnras/172.3.557
- Tadhunter, C. 2016, Radio AGN in the Local Universe: Unification, Triggering and Evolution, A&ARv, 24, 10 https://doi.org/10.1007/s00159-016-0094-x
- vanWeeren, R., Rottgering, H. J. A., Bruggen, M., & Hoeft, M. 2010, Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster, Science, 330, 347
- van Weeren, R., Rottgering, H. J. A., Intema, H. T., Rudnick, L., Bruggen, M., Hoeft, M., & Oonk, J. B. R. 2012, The "Toothbrush-Relic": Evidence for a Coherent Linear 2-Mpc Scale Shock Wave in a Massive Merging Galaxy Cluster?, A&A, 546, 124 https://doi.org/10.1051/0004-6361/201219000
- van Weeren, R. J., Andrade-Santos, F., Dawson, W. A., et al. 2017a, The Case for Electron Re-Acceleration at Galaxy Cluster Shocks, Nature Astronomy, 1, 0005 https://doi.org/10.1038/s41550-016-0005
- van Weeren, R. J., Brunetti, G., Bruggen, M., et al. 2016, LOFAR, VLA, and CHANDRA Observations of the Toothbrush Galaxy Cluster, ApJ, 818, 204 https://doi.org/10.3847/0004-637X/818/2/204
- van Weeren, R. J., Ogrean, G. A., Jones, C., et al. 2017b, Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745, ApJ, 835, 197 https://doi.org/10.3847/1538-4357/835/2/197