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Abstract. In the present paper, we have studied the Finslerian hypersurfaces and gener-

alized β−conformal change of Finsler metric. The relations between the Finslerian hyper-

surface and the other which is Finslerian hypersurface given by generalized β−conformal

change have been obtained. We have also proved that generalized β−conformal change

makes three types of hypersurfaces invariant under certain conditions.

1. Introduction

Let (Mn, L) be an n−dimensional Finsler space on a differentiable manifold Mn

equipped with the fundamental function L(x, y). In 1984, Shibata [12] introduced
the transformation of Finsler metric:

(1.1) L(x, y) = f(L, β),

where β = bi(x) yi, bi(x) are components of a covariant vector in (Mn, L) and f is
positively homogeneous function of degree one in L and β. This change of metric is
called a β−change. In 2013, Prasad, B. N. and Kumari, Bindu [10] have considered
the β−change of Finsler metric. In the year 2014 [13], we studied generalized
β−change defining as

(1.2) L(x, y)→ L(x, y) = f(L, β1), β2), . . . , βm)),

where f is any positively homogeneous function of degree one in L, β1), β2), . . .,
βm), where β1), β2), . . ., βm) are linearly independent one-form.
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The conformal theory of Finsler spaces has been initiated by M. S. Knebelman
[7] in 1929 and has been investigated in detail by many authors [1, 2, 3, 6] etc. The
conformal change is defined as

(1.3) L(x, y)→ eσ(x)L(x, y),

where σ(x) is a function of position only and known as conformal factor.
We also studied the generalized β−conformal change of Finsler metric by taking

(1.4) L = f(eσ(x) L(x, y), β1), β2), . . . , βm)),

where f is any positively homogeneous function of degree one in eσL, β1), β2), . . .,
βm).

On the other hand, in 1985, M. Matsumoto investigated the theory of Finslerian
hypersurface [8]. He has defined three types of hypersurfaces that were called a
hyperplane of the first, second and third kinds.

In the year 2009, B. N. Prasad and Gauri Shanker [11] studied the Finslerian
hypersurfaces and β−change of Finsler metric and obtained different results in his
paper. In the present paper, using the field of linear frame [5, 4, 9], we shall
consider Finslerian hypersurfaces given by a generalized β−conformal change of a
Finsler metric. Our purpose is to give some relations between the original Finslerian
hypersurface and the other which is Finslerian hypersurface given by generalized
β−conformal change. We have also obtained that a generalized β−conformal change
makes three types of hypersurfaces invariant under certain conditions.

2. Finslerian Hypersurfaces

Let Mn be an n−dimensional manifold and Fn = (Mn, L) be an n−dimensional
Finsler space equipped with the fundamental function L(x, y) on Mn. The metric
tensor gij(x, y) and Cartan’s C−tensor Cijk(x, y) are given by

gij =
1

2

∂2L2

∂yi ∂yj
, Cijk =

1

2

∂gij
∂yk

,

respectively and we introduce the Cartan’s connection CΓ = (F ijk, N
i
j , C

i
jk) in Fn.

A hypersurface Mn−1 of the underlying smooth manifold Mn may be paramet-
rically represented by the equation xi = xi(uα), where uα are Gaussian coordinates
on Mn−1 and Greek indices vary from 1 to n − 1. Here, we shall assume that the

matrix consisting of the projection factors Biα = ∂xi

∂uα is of rank n−1. The following
notations are also employed:

Biαβ =
∂2xi

∂uα ∂uβ
, Bi0β = vαBiαβ .

If the supporting element yi at a point (uα) of Mn−1 is assumed to be tangential
to Mn−1, we may then write yi = Biα(u)vα, i.e. vα is thought of as the supporting
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element of Mn−1 at the point (uα). Since the function L(u, v) = L{x(u), y(u, v)}
gives rise to a Finsler metric of Mn−1, we get a (n− 1)−dimensional Finsler space
Fn−1 = {Mn−1, L(u, v)}.

At each point (uα) of Fn−1, the unit normal vector N i(u, v) is defined by

(2.1) gijB
i
αN

j = 0, gijN
iN j = 1.

If Bαi , Ni is the inverse matrix of (Biα, N
i), we have

BiαB
β
i = δβα, BiαNi = 0, N iNi = 1 and BiαB

α
j +N iNj = δij .

Making use of the inverse matrix (gαβ) of (gαβ), we get

(2.2) Bαi = gαβgijB
j
β , Ni = gijN

j .

For the induced Cartan’s connection ICΓ = (Fαβγ , N
β
α , C

α
βγ) on Fn−1, the second

fundamental h−tensor Hαβ and the normal curvature Hα are respectively given by
[9]

(2.3)
Hαβ = Ni(B

i
αβ + F ijkB

j
αB

k
β) +MαHβ ,

Hα = Ni(B
i
0β +N i

jB
j
β),

where
Mα = CijkB

i
αN

jNk.

Contracting Hαβ by vα, we immediately get H0β = Hαβv
α = Hβ . Furthermore the

second fundamental v−tensor Mαβ is given by [8]

(2.4) Mαβ = CijkB
i
αB

j
βN

k.

3. Finsler Space with Generalized β−Conformal Change

Let (Mn, L) be a Finsler space Fn, where Mn is an n−dimensional differentiable
manifold equipped with a fundamental function L. A change in fundamental metric
L, defined by equation (1.4), is called generalized β−conformal change, where σ(x)
is conformal factor and function of position only and β1), β2), . . ., βm) all are

linearly independent one-form and defined as βr) = b
r)
i y

i.
Homogeneity of f gives

(3.1) eσLf0 + frβ
r) = f,

where the subscripts ‘0’ and ‘r’ denote the partial derivative with respect to L and
βr) respectively. The letters r, s, t, r′ and s′ vary from 1 to m throughout the
paper. Summation convention is applied for the indices r, s, t, r′ and s′. If we
write F

n
= (Mn, L), then the Finsler space F

n
is said to be obtained from Fn by
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generalized β−conformal change. The quantities corresponding to F
n

are denoted
by putting bar on those quantities.

To find the relation between fundamental quantities of (Mn, L) and (Mn, L),
we use the following results:

(3.2) ∂̇i β
r) = b

r)
i , ∂̇i L = li, ∂̇j li = L−1hij ,

where ∂̇i stands for ∂
∂yi and hij are components of angular metric tensor of (Mn, L)

given by
hij = gij − li lj = L ∂̇i ∂̇j L.

Differentiating (3.1) with respect to L and βs) respectively, we get

(3.3) eσLf00 + f0rβ
r) = 0

and

(3.4) eσLf0s + frsβ
r) = 0.

The successive differentiation of (1.4) with respect to yi and yj give

(3.5) li = eσf0li + frb
r)
i ,

(3.6) hij = eσ
ff0
L
hij + e2σff00lilj + eσff0r(b

r)
j li + b

r)
i lj) + ffrsb

r)
i b

s)
j .

Using equations (3.3) and (3.4) in equation (3.6), we have

(3.7) hij = eσ
ff0
L
hij + ffrs

(
b
r)
i −

βr)

L
li

)(
b
s)
j −

βs)

L
lj

)
.

If we put m
r)
i = b

r)
i −

βr)

L li, equation (3.7) may be written as

(3.8) hij = eσ
ff0
L
hij + ffrsm

r)
i m

s)
j .

From equations (3.5) and (3.8), we get the following relation between metric tensors
of (Mn, L) and (Mn, L)

(3.9)
gij =eσ

ff0
L
gij + eσ

(
eσf20 −

ff0
L

)
lilj + ffrsm

r)
i m

s)
j

+ eσf0fr(b
r)
i lj + b

r)
j li) + frfsb

r)
i b

s)
j .

Now,

(3.10)

(a) ∂̇im
r)
j = − 1

L

(
m
r)
i lj +

βr)

L
hij

)
,

(b) ∂̇if = eσf0li + frb
r)
i ,

(c) ∂̇ifrs = eσfrs0li + frstb
t)
i .
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Differentiating equation (3.8) with respect to yk and using equations (3.2), (3.3),
(3.4), (3.5), (3.9) and (3.10), we get

(3.11) Cijk = p0Cijk + p1(hijm
r)
k + hjkm

r)
i + hkim

r)
j ) + p2m

r)
i m

s)
j m

t)
k ,

where

(3.12)
p0 = eσ

ff0
L
Cijk, p1 =

eσ

2L
(f0fr + ff0r),

p2 =
1

2
(frsft + fstfr + ftrfs + ffrst).

4. Hypersurfaces Given by a Generalized β−Conformal Change

Consider a Finslerian hypersurface Fn−1 = {Mn−1, L(u, v)} of the Fn and

another Finslerian hypersurface F
n−1

= {Mn−1, L(u, v)} of the F
n

given by gen-
eralized β−conformal change. Let N i be the unit vector at each point of Fn−1 and
(Bαi , Ni) be the inverse matrix of (Biα, N

i). The function Bαi may be considered as
components of (n − 1) linearly independent tangent vectors of Fn−1 and they are
invariant under generalized β−conformal change. Thus, we shall show that a unit

normal vector N
i
(u, v) of F

n−1
is uniquely determined by

(4.1) gijB
i
αN

j
= 0, gijN

i
N
j

= 1.

Contracting (3.9) by N iN j and paying attention to (2.1) and the fact that liN
i = 0,

we have

(4.2) gijN
iN j = p0 + p(b

r)
i b

s)
j N

iN j),

where p = ffrs + frfs. Therefore, we obtain

gij

± N i√
p0 + p(b

r)
i b

s)
j N

iN j)

± N j√
p0 + p(b

r)
i b

s)
j N

iN j)

 = 1.

Hence, we can put

N
i

=
N i√

p0 + p(b
r)
i b

s)
j N

iN j)
,

where we have chosen the positive sign in order to fix an orientation.
Using equations (3.9), (4.3) and from first condition of (4.1), we have

(4.4) Biα(2p1Lli + pb
r)
i ).

b
s)
j N

j√
p0 + p(b

r)
i b

s)
j N

iN j)
= 0.
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If Biα(2p1Lli+pb
r)
i ) = 0, then contracting it by vα and using yi = Biαv

α, we get
L = 0 or βr) = 0 which is a contradiction with the assumption that L > 0. Hence

b
s)
j N

j = 0. Therefore equation (4.3) is written as

(4.5) N
i

=
N i

√
p
0

.

Summarizing the above, we obtain

Proposition 4.1. For a field of linear frame (Bi1, B
i
2, . . . , B

i
n−1, N

i) of Fn there

exists a linear frame (Bi1, B
i
2, . . . , B

i
n−1, N

i
= Ni√

p
0
) of F

n
such that (4.1) is satisfied

along F
n−1

and then b
r)
i is tangential to both of the hypersurfaces Fn−1 and F

n−1
.

The quantities B
α

i are uniquely defined along F
n−1

by

B
α

i = gαβgijB
j
β

where gαβ is the inverse matrix of gαβ . Let (B
α

i , N
i
) be the inverse matrix of

(Biα, N
i
), then we have

BiαB
β

i = δβα, BiαN i = 0, N
i
N i = 1.

Furthermore BiαB
α

j +N
i
N j = δij . We also get N i = gijN

j
which in view of (3.5),

(3.9) and (4.5) gives

(4.6) N i =
√
p0Ni.

We denote the Cartan’s connection of Fn and F
n

by (F ijk, N
i
j , C

i
jk) and

(F
i

jk, N
i

j , C
i

jk) respectively and put Di
jk = F

i

jk−F ijk which will be called difference

tensor. We choose the vector field br)i in Fn such that

(4.7) Di
jk = Ajkb

r)i +Bjkl
i + δijDk + δikDj ,

where Ajk and Bjk are components of a symmetric covariant tensor of second order
and Di are components of a covariant vector. Since Nib

r)i = 0, Nil
i = 0 and

δijNiB
j
α = 0, from (4.7), we get

(4.8) NiD
i
jkB

j
αB

k
β = 0 and NiD

i
0kB

k
β = 0.

Therefore, from (2.3) and (4.6), we get

(4.9) Hα =
√
p0Hα.

If each path of a hypersurface Fn−1 with respect to the induced connection also
a path of the enveloping space Fn, then Fn−1 is called a hyperplane of the first
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kind. A hyperplane of the first kind is characterized by Hα = 0 [8]. Hence from
(4.9), we have

Theorem 4.1. If b
r)
i (x) be a vector field in Fn satisfying (4.7), then a hypersurface

Fn−1 is a hyperplane of the first kind if and only if the hypersurface F
n−1

is a
hyperplane of the first kind.

Next contracting (3.11) by BiαN
j
N
k

and paying attention to (4.5), m
r)
i N

i = 0,
hjkN

jNk = 1 and hijB
i
αN

j = 0, we get

Mα = Mα +
p1
p0
m
r)
i B

i
α.

From (2.3), (4.6), (4.8), we have

(4.10) Hαβ =
√
p0Hαβ .

If each h−path of a hypersurface Fn−1 with respect to the induced connection
is also h−path of the enveloping space Fn, then Fn−1 is called a hyperplane of
the second kind. A hyperplane of the second kind is characterized by Hαβ = 0 [8].
Since Hαβ = 0 implies that Hα = 0 from (4.9) and (4.10), we have the following:

Theorem 4.2. If b
r)
i (x) be a vector field in Fn satisfying (4.7), then a hypersurface

Fn−1 is a hyperplane of the second kind if and only if the hypersurface F
n−1

is a
hyperplane of the second kind.

Finally contracting (3.11) by BiαB
j
βN

k
and paying attention to (4.5), we have

(4.11) Mαβ =
√
p0Mαβ .

If the unit normal vector of Fn−1 is parallel along each curve of Fn−1, then Fn−1

is called a hyperplane of third kind. A hyperplane of the third kind is characterized
by Hαβ = 0, Mαβ = 0 [8]. From (4.10) and (4.11), we have:

Theorem 4.3. If b
r)
i (x) be a vector field in Fn satisfying (4.7), then a hypersur-

face Fn−1 is a hyperplane of the third kind if and only if the hypersurface F
n−1

is
a hyperplane of the third kind.
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