KYUNGPOOK Math. J. 58(2018), 781-788 https://doi.org/10.5666/KMJ.2018.58.4.781 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Finslerian Hypersurface and Generalized β –Conformal Change of Finsler Metric

SHIV KUMAR TIWARI* AND ANAMIKA RAI Department of Mathematics, K. S. Saket Post Graduate College, Ayodhya, Faizabad-224 123, India e-mail: sktiwarisaket@yahoo.com and anamikarai2538@gmail.com

ABSTRACT. In the present paper, we have studied the Finslerian hypersurfaces and generalized β -conformal change of Finsler metric. The relations between the Finslerian hypersurface and the other which is Finslerian hypersurface given by generalized β -conformal change have been obtained. We have also proved that generalized β -conformal change makes three types of hypersurfaces invariant under certain conditions.

1. Introduction

Let (M^n, L) be an *n*-dimensional Finsler space on a differentiable manifold M^n equipped with the fundamental function L(x, y). In 1984, Shibata [12] introduced the transformation of Finsler metric:

(1.1)
$$\overline{L}(x,y) = f(L,\beta)$$

where $\beta = b_i(x) y^i$, $b_i(x)$ are components of a covariant vector in (M^n, L) and f is positively homogeneous function of degree one in L and β . This change of metric is called a β -change. In 2013, Prasad, B. N. and Kumari, Bindu [10] have considered the β -change of Finsler metric. In the year 2014 [13], we studied generalized β -change defining as

(1.2)
$$L(x,y) \to \overline{L}(x,y) = f(L,\beta^{1}),\beta^{2},\dots,\beta^{m}),$$

where f is any positively homogeneous function of degree one in $L, \beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(m)}$, where $\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(m)}$ are linearly independent one-form.

^{*} Corresponding Author.

Received March 11, 2015; accepted February 13, 2018.

²⁰¹⁰ Mathematics Subject Classification: 53B40, 53C60.

Key words and phrases: generalized β -conformal change, generalized β -change, β -change, conformal change, Finslerian hypersurfaces, hyperplane of first, second and third kinds.

The conformal theory of Finsler spaces has been initiated by M. S. Knebelman [7] in 1929 and has been investigated in detail by many authors [1, 2, 3, 6] etc. The conformal change is defined as

(1.3)
$$L(x,y) \to e^{\sigma(x)}L(x,y),$$

where $\sigma(x)$ is a function of position only and known as conformal factor.

We also studied the generalized β -conformal change of Finsler metric by taking

(1.4)
$$\overline{L} = f(e^{\sigma(x)} L(x, y), \beta^{1}, \beta^{2}, \dots, \beta^{m}),$$

where f is any positively homogeneous function of degree one in $e^{\sigma}L$, β^{1} , β^{2} , ..., β^{m} .

On the other hand, in 1985, M. Matsumoto investigated the theory of Finslerian hypersurface [8]. He has defined three types of hypersurfaces that were called a hyperplane of the first, second and third kinds.

In the year 2009, B. N. Prasad and Gauri Shanker [11] studied the Finslerian hypersurfaces and β -change of Finsler metric and obtained different results in his paper. In the present paper, using the field of linear frame [5, 4, 9], we shall consider Finslerian hypersurfaces given by a generalized β -conformal change of a Finsler metric. Our purpose is to give some relations between the original Finslerian hypersurface and the other which is Finslerian hypersurface given by generalized β -conformal change. We have also obtained that a generalized β -conformal change makes three types of hypersurfaces invariant under certain conditions.

2. Finslerian Hypersurfaces

Let M^n be an *n*-dimensional manifold and $F^n = (M^n, L)$ be an *n*-dimensional Finsler space equipped with the fundamental function L(x, y) on M^n . The metric tensor $g_{ij}(x, y)$ and Cartan's *C*-tensor $C_{ijk}(x, y)$ are given by

$$g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \, \partial y^j}, \qquad C_{ijk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k},$$

respectively and we introduce the Cartan's connection $C\Gamma = (F_{jk}^i, N_j^i, C_{jk}^i)$ in F^n .

A hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametrically represented by the equation $x^i = x^i(u^{\alpha})$, where u^{α} are Gaussian coordinates on M^{n-1} and Greek indices vary from 1 to n-1. Here, we shall assume that the matrix consisting of the projection factors $B^i_{\alpha} = \frac{\partial x^i}{\partial u^{\alpha}}$ is of rank n-1. The following notations are also employed:

$$B^{i}_{\alpha\beta} = \frac{\partial^{2}x^{i}}{\partial u^{\alpha} \, \partial u^{\beta}}, \qquad B^{i}_{0\beta} = v^{\alpha}B^{i}_{\alpha\beta}$$

If the supporting element y^i at a point (u^{α}) of M^{n-1} is assumed to be tangential to M^{n-1} , we may then write $y^i = B^i_{\alpha}(u)v^{\alpha}$, i.e. v^{α} is thought of as the supporting element of M^{n-1} at the point (u^{α}) . Since the function $\overline{L}(u,v) = L\{x(u), y(u,v)\}$ gives rise to a Finsler metric of M^{n-1} , we get a (n-1)-dimensional Finsler space $F^{n-1} = \{M^{n-1}, \overline{L}(u,v)\}$.

At each point (u^{α}) of F^{n-1} , the unit normal vector $N^{i}(u, v)$ is defined by

(2.1)
$$g_{ij}B^i_{\alpha}N^j = 0, \qquad g_{ij}N^i N^j = 1.$$

If B_i^{α} , N_i is the inverse matrix of (B_{α}^i, N^i) , we have

$$B^i_{\alpha}B^{\beta}_i = \delta^{\beta}_{\alpha}, \quad B^i_{\alpha}N_i = 0, \quad N^iN_i = 1 \quad \text{and} \quad B^i_{\alpha}B^{\alpha}_j + N^iN_j = \delta^i_j.$$

Making use of the inverse matrix $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get

(2.2)
$$B_i^{\alpha} = g^{\alpha\beta} g_{ij} B_{\beta}^j, \quad N_i = g_{ij} N^j.$$

For the induced Cartan's connection $IC\Gamma = (F^{\alpha}_{\beta\gamma}, N^{\beta}_{\alpha}, C^{\alpha}_{\beta\gamma})$ on F^{n-1} , the second fundamental h-tensor $H_{\alpha\beta}$ and the normal curvature H_{α} are respectively given by [9]

(2.3)
$$\begin{aligned} H_{\alpha\beta} &= N_i (B^i_{\alpha\beta} + F^i_{jk} B^j_{\alpha} B^k_{\beta}) + M_{\alpha} H_{\beta}, \\ H_{\alpha} &= N_i (B^i_{0\beta} + N^i_j B^j_{\beta}), \end{aligned}$$

where

$$M_{\alpha} = C_{ijk} B^i_{\alpha} N^j N^k.$$

Contracting $H_{\alpha\beta}$ by v^{α} , we immediately get $H_{0\beta} = H_{\alpha\beta}v^{\alpha} = H_{\beta}$. Furthermore the second fundamental v-tensor $M_{\alpha\beta}$ is given by [8]

(2.4)
$$M_{\alpha\beta} = C_{ijk} B^i_{\alpha} B^j_{\beta} N^k.$$

3. Finsler Space with Generalized β -Conformal Change

Let (M^n, L) be a Finsler space F^n , where M^n is an *n*-dimensional differentiable manifold equipped with a fundamental function *L*. A change in fundamental metric *L*, defined by equation (1.4), is called generalized β -conformal change, where $\sigma(x)$ is conformal factor and function of position only and β^{11} , β^{21} , ..., β^{m1} all are linearly independent one-form and defined as $\beta^{r1} = b_i^{r1} y^i$.

Homogeneity of f gives

$$e^{\sigma}Lf_0 + f_r\beta^{r} = f,$$

where the subscripts '0' and 'r' denote the partial derivative with respect to L and $\beta^{r)}$ respectively. The letters r, s, t, r' and s' vary from 1 to m throughout the paper. Summation convention is applied for the indices r, s, t, r' and s'. If we write $\overline{F}^n = (M^n, \overline{L})$, then the Finsler space \overline{F}^n is said to be obtained from F^n by

generalized β -conformal change. The quantities corresponding to \overline{F}^n are denoted by putting bar on those quantities.

To find the relation between fundamental quantities of (M^n, L) and (M^n, \overline{L}) , we use the following results:

(3.2)
$$\dot{\partial}_i \beta^{r} = b_i^{r}, \quad \dot{\partial}_i L = l_i, \quad \dot{\partial}_j l_i = L^{-1} h_{ij},$$

where $\dot{\partial}_i$ stands for $\frac{\partial}{\partial y^i}$ and h_{ij} are components of angular metric tensor of (M^n, L) given by

$$h_{ij} = g_{ij} - l_i \, l_j = L \, \dot{\partial}_i \, \dot{\partial}_j \, L.$$

Differentiating (3.1) with respect to L and $\beta^{(s)}$ respectively, we get

(3.3)
$$e^{\sigma} L f_{00} + f_{0r} \beta^{r)} = 0$$

and

$$(3.4) e^{\sigma} L f_{0s} + f_{rs} \beta^{r)} = 0$$

The successive differentiation of (1.4) with respect to y^i and y^j give

(3.5)
$$\bar{l}_i = e^{\sigma} f_0 l_i + f_r b_i^{r_j}$$

(3.6)
$$\overline{h}_{ij} = e^{\sigma} \frac{ff_0}{L} h_{ij} + e^{2\sigma} ff_{00} l_i l_j + e^{\sigma} ff_{0r} (b_j^r) l_i + b_i^{r)} l_j) + ff_{rs} b_i^{r)} b_j^{s)}.$$

Using equations (3.3) and (3.4) in equation (3.6), we have

(3.7)
$$\overline{h}_{ij} = e^{\sigma} \frac{ff_0}{L} h_{ij} + ff_{rs} \left(b_i^{r)} - \frac{\beta^{r}}{L} l_i \right) \left(b_j^{s)} - \frac{\beta^{s}}{L} l_j \right)$$

If we put $m_i^{(r)} = b_i^{(r)} - \frac{\beta^{(r)}}{L} l_i$, equation (3.7) may be written as

(3.8)
$$\overline{h}_{ij} = e^{\sigma} \frac{ff_0}{L} h_{ij} + ff_{rs} m_i^{r)} m_j^{s)}.$$

From equations (3.5) and (3.8), we get the following relation between metric tensors of (M^n, L) and (M^n, \overline{L})

(3.9)
$$\overline{g}_{ij} = e^{\sigma} \frac{ff_0}{L} g_{ij} + e^{\sigma} \left(e^{\sigma} f_0^2 - \frac{ff_0}{L} \right) l_i l_j + ff_{rs} m_i^{r)} m_j^{s)} \\ + e^{\sigma} f_0 f_r (b_i^{r)} l_j + b_j^{r)} l_i) + f_r f_s b_i^{r)} b_j^{s)}.$$

Now,

(3.10) (a)
$$\dot{\partial}_i m_j^{r)} = -\frac{1}{L} \left(m_i^{r)} l_j + \frac{\beta^{r)}}{L} h_{ij} \right),$$

(b) $\dot{\partial}_i f = e^{\sigma} f_0 l_i + f_r b_i^{r)},$
(c) $\dot{\partial}_i f_{rs} = e^{\sigma} f_{rs0} l_i + f_{rst} b_i^{t)}.$

Differentiating equation (3.8) with respect to y^k and using equations (3.2), (3.3), (3.4), (3.5), (3.9) and (3.10), we get

(3.11)
$$\overline{C}_{ijk} = p_0 C_{ijk} + p_1 (h_{ij} m_k^{r)} + h_{jk} m_i^{r)} + h_{ki} m_j^{r)} + p_2 m_i^{r)} m_j^{s)} m_k^{t)},$$

where

(3.12)
$$p_0 = e^{\sigma} \frac{ff_0}{L} C_{ijk}, \qquad p_1 = \frac{e^{\sigma}}{2L} (f_0 f_r + ff_{0r}),$$
$$p_2 = \frac{1}{2} (f_{rs} f_t + f_{st} f_r + f_{tr} f_s + ff_{rst}).$$

4. Hypersurfaces Given by a Generalized β -Conformal Change

Consider a Finslerian hypersurface $F^{n-1} = \{M^{n-1}, \overline{L}(u, v)\}$ of the F^n and another Finslerian hypersurface $\overline{F}^{n-1} = \{M^{n-1}, \overline{L}(u, v)\}$ of the \overline{F}^n given by generalized β -conformal change. Let N^i be the unit vector at each point of F^{n-1} and (B^{α}_i, N_i) be the inverse matrix of (B^i_{α}, N^i) . The function B^{α}_i may be considered as components of (n-1) linearly independent tangent vectors of F^{n-1} and they are invariant under generalized β -conformal change. Thus, we shall show that a unit normal vector $\overline{N}^i(u, v)$ of \overline{F}^{n-1} is uniquely determined by

(4.1)
$$\overline{g}_{ij}B^i_{\alpha}\overline{N}^j = 0, \qquad \overline{g}_{ij}\overline{N}^i\,\overline{N}^j = 1.$$

Contracting (3.9) by $N^i N^j$ and paying attention to (2.1) and the fact that $l_i N^i = 0$, we have

(4.2)
$$\overline{g}_{ij}N^{i}N^{j} = p_{0} + p(b_{i}^{r)}b_{j}^{s)}N^{i}N^{j}),$$

where $p = f f_{rs} + f_r f_s$. Therefore, we obtain

$$\overline{g}_{ij}\left(\pm\frac{N^i}{\sqrt{p_0+p(b_i^r)b_j^{s)}N^iN^j)}}\right)\left(\pm\frac{N^j}{\sqrt{p_0+p(b_i^r)b_j^{s)}N^iN^j)}}\right) = 1.$$

Hence, we can put

$$\overline{N}^{i} = \frac{N^{i}}{\sqrt{p_0 + p(b_i^{r)}b_j^{s)}N^iN^j)}}$$

where we have chosen the positive sign in order to fix an orientation.

Using equations (3.9), (4.3) and from first condition of (4.1), we have

(4.4)
$$B_{\alpha}^{i}(2p_{1}Ll_{i}+pb_{i}^{r)}).\frac{b_{j}^{s)}N^{j}}{\sqrt{p_{0}+p(b_{i}^{r)}b_{j}^{s})N^{i}N^{j}}}=0.$$

If $B^i_{\alpha}(2p_1Ll_i+pb^{r)}_i)=0$, then contracting it by v^{α} and using $y^i=B^i_{\alpha}v^{\alpha}$, we get L=0 or $\beta^{r)}=0$ which is a contradiction with the assumption that L>0. Hence $b^{s)}_i N^j=0$. Therefore equation (4.3) is written as

(4.5)
$$\overline{N}^i = \frac{N^i}{\sqrt{p_0}}$$

Summarizing the above, we obtain

Proposition 4.1. For a field of linear frame $(B_1^i, B_2^i, \ldots, B_{n-1}^i, N^i)$ of F^n there exists a linear frame $(B_1^i, B_2^i, \ldots, B_{n-1}^i, \overline{N}^i = \frac{N^i}{\sqrt{p_0}})$ of \overline{F}^n such that (4.1) is satisfied along \overline{F}^{n-1} and then b_i^{r} is tangential to both of the hypersurfaces F^{n-1} and \overline{F}^{n-1} .

The quantities \overline{B}_i^{α} are uniquely defined along \overline{F}^{n-1} by

$$\overline{B}_i^{\alpha} = \overline{g}^{\alpha\beta} \overline{g}_{ij} B^j_{\beta}$$

where $\overline{g}^{\alpha\beta}$ is the inverse matrix of $\overline{g}_{\alpha\beta}$. Let $(\overline{B}_i^{\alpha}, \overline{N}^i)$ be the inverse matrix of $(B_{\alpha}^i, \overline{N}^i)$, then we have

$$B^i_{\alpha}\overline{B}^{\beta}_i = \delta^{\beta}_{\alpha}, \qquad B^i_{\alpha}\overline{N}_i = 0, \qquad \overline{N}^i\overline{N}_i = 1.$$

Furthermore $B^i_{\alpha}\overline{B}^{\alpha}_j + \overline{N}^i\overline{N}_j = \delta^i_j$. We also get $\overline{N}_i = \overline{g}_{ij}\overline{N}^j$ which in view of (3.5), (3.9) and (4.5) gives

(4.6)
$$\overline{N}_i = \sqrt{p_0} N_i$$

We denote the Cartan's connection of F^n and \overline{F}^n by $(F^i_{jk}, N^i_j, C^i_{jk})$ and $(\overline{F}^i_{jk}, \overline{N}^i_j, \overline{C}^i_{jk})$ respectively and put $D^i_{jk} = \overline{F}^i_{jk} - F^i_{jk}$ which will be called difference tensor. We choose the vector field $b^{r)i}$ in F^n such that

(4.7)
$$D_{jk}^{i} = A_{jk}b^{r)i} + B_{jk}l^{i} + \delta_{j}^{i}D_{k} + \delta_{k}^{i}D_{j},$$

where A_{jk} and B_{jk} are components of a symmetric covariant tensor of second order and D_i are components of a covariant vector. Since $N_i b^{r_i j} = 0$, $N_i l^i = 0$ and $\delta_i^i N_i B_{\alpha}^j = 0$, from (4.7), we get

(4.8)
$$N_i D^i_{jk} B^j_{\alpha} B^k_{\beta} = 0 \quad \text{and} \quad N_i D^i_{0k} B^k_{\beta} = 0.$$

Therefore, from (2.3) and (4.6), we get

(4.9)
$$\overline{H}_{\alpha} = \sqrt{p_0} H_{\alpha}.$$

If each path of a hypersurface F^{n-1} with respect to the induced connection also a path of the enveloping space F^n , then F^{n-1} is called a hyperplane of the first kind. A hyperplane of the first kind is characterized by $H_{\alpha} = 0$ [8]. Hence from (4.9), we have

Theorem 4.1. If $b_i^{r}(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the first kind if and only if the hypersurface \overline{F}^{n-1} is a hyperplane of the first kind.

Next contracting (3.11) by $B^i_{\alpha} \overline{N}^j \overline{N}^k$ and paying attention to (4.5), $m^{r)}_i N^i = 0$, $h_{jk} N^j N^k = 1$ and $h_{ij} B^i_{\alpha} N^j = 0$, we get

$$\overline{M}_{\alpha} = M_{\alpha} + \frac{p_1}{p_0} m_i^{r)} B_{\alpha}^i.$$

From (2.3), (4.6), (4.8), we have

(4.10)
$$\overline{H}_{\alpha\beta} = \sqrt{p}_0 H_{\alpha\beta}$$

If each h-path of a hypersurface F^{n-1} with respect to the induced connection is also h-path of the enveloping space F^n , then F^{n-1} is called a hyperplane of the second kind. A hyperplane of the second kind is characterized by $H_{\alpha\beta} = 0$ [8]. Since $H_{\alpha\beta} = 0$ implies that $H_{\alpha} = 0$ from (4.9) and (4.10), we have the following:

Theorem 4.2. If $b_i^{(r)}(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the second kind if and only if the hypersurface \overline{F}^{n-1} is a hyperplane of the second kind.

Finally contracting (3.11) by $B^i_{\alpha} B^j_{\beta} \overline{N}^k$ and paying attention to (4.5), we have

(4.11)
$$\overline{M}_{\alpha\beta} = \sqrt{p}_0 M_{\alpha\beta}$$

If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1} , then F^{n-1} is called a hyperplane of third kind. A hyperplane of the third kind is characterized by $H_{\alpha\beta} = 0$, $M_{\alpha\beta} = 0$ [8]. From (4.10) and (4.11), we have:

Theorem 4.3. If $b_i^{(r)}(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the third kind if and only if the hypersurface \overline{F}^{n-1} is a hyperplane of the third kind.

References

- M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ., 16(1976), 25–50.
- [2] H. Izumi, Conformal transformations of Finsler spaces I, Tensor (N.S.), 31(1977), 33-41.

- [3] H. Izumi, Conformal transformations of Finsler spaces II, Tensor (N.S.), 34(1980), 337–359.
- [4] S. Kikuchi, On the theory of subspace in a Finsler space, Tensor (N.S.), 2(1952), 67–69.
- [5] M. Kitayama, Finslerian hypersurfaces and metric transformations, Tensor (N.S.), 60(1998), 171–178.
- [6] M. Kitayama, Geometry of transformations of Finsler metrics, Hokkaido University of Education, Kushiro Campus, Japan, 2000.
- [7] M. S. Knebelman, Conformal geometry of generalized metric spaces, Proc. Nat. Acad. Sci. USA, 15(1929), 376–379.
- [8] M. Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., **25**(1985), 107–144.
- [9] A. Moor, Finsler raume von identischer torsion, Acta Sci. Math., 34(1973), 279–288.
- [10] B. N. Prasad and Bindu Kumari, The β-change of Finsler metric and imbedding classes of their tangent spaces, Tensor (N.S.), 74(2013), 48–59.
- B. N. Prasad and Gauri Shanker, Finslerian hypersurfaces and β-change of Finsler metric, Acta Cienc. Indica Math., 35(3)(2009), 1055–1061.
- [12] C. Shibata, On invariant tensors of β-change of Finsler metrics, J. Math. Kyoto Univ., 24(1984), 163–188.
- [13] S. K. Tiwari and Anamika Rai, The generalized β-change of Finsler metric, International J. Contemp. Math. Sci., 9(2014), 695–702.