DOI QR코드

DOI QR Code

Certain Models of the Lie Algebra 𝒦5 and Their Connection with Special Functions

  • Received : 2018.07.15
  • Accepted : 2018.11.06
  • Published : 2018.12.23

Abstract

In this paper, we discuss the connection between the 5-dimensional complex Lie algebra ${\mathcal{K}} _5$ and Special functions. We construct certain two variable models of the irreducible representations of ${\mathcal{K}}_5$. We also use an Euler type integral transformation to obtain the new transformed models, in which the basis function appears as $_2F_1$. Further, we utilize these models to get some generating functions and recurrence relations.

Keywords

References

  1. G. Gasper and M. Rahman, Basic hypergeometric series. Second Edition, Cambridge University Press, 2004.
  2. H. L. Manocha, Lie algebras of difference-differential operators and Appell functions $F_1$, J. Math. Anal. Appl., 138(1989), 491-510. https://doi.org/10.1016/0022-247X(89)90305-3
  3. H. L. Manocha and V. Sahai, On models of irreducible unitary representations of compact Lie group SU(2) involving special functions, Indian J. pure Appl. Math., 21(12)(1990), 1059-1071.
  4. W. Miller, Lie theory and special functions, Mathematics in Science and Engineering 43, Academic Press, 1968.
  5. E. D. Rainville, Special functions, Macmillan, New York, 1960.
  6. V. Sahai, On certain models of irreducible representations of sl(2;C) and Euler integral transformation, Indian J. pure appl. Math., 26(12)(1995), 1177-1189.
  7. V. Sahai and S. Yadav, Representations of two parameter quantum algebras and p, q-special functions, J. Math. Anal. Appl., 335(2007), 268-279. https://doi.org/10.1016/j.jmaa.2007.01.072
  8. V. Sahai and S. Yadav, On models of certain p, q-algebra representations: The p, q-oscillator algebra, J. Math. Phys., 49(2008), 053504, 12 pp. https://doi.org/10.1063/1.2908158
  9. I. N. Sneddon, Special functions of mathematical physics and chemistry, Oliver and Boyd, Ltd., Edinburgh, 1961.
  10. H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Hor-wood, Chichester, Halsted Press, New York, 1984.
  11. N. Ja. Vilenkin, Special functions and the theory of group representations, American Mathematical Society, 1968.
  12. A. Wawrzynczyk, Group representations and special functions: Examples and Problems prepared by Aleksander Strasburger, Polish Scientific Publishers - Warszawa, 1984.