Acknowledgement
Supported by : National Science Foundation of China
References
- Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudiercabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
- Bentz, D.P. (2000), "Fibers, percolation, and spalling of highperformance concrete", ACI Mater. J., 97(3), 351-359.
- Bentz, D.P., Hwang, J.T.G., Hagwood, C., Garboczi, E.J., Snyder, K.A. and Scrivener, N.B.K.L. (1994), "Interfacial zone percolation in concrete: Effects of interfacial zone thickness and aggregate shape", Mrs Proc., 370, https://doi.org/10.1557/PROC-370-437.
- Delagrave, A., Bigas, J.P., Ollivier, J.P., Marchand, J. and Pigeon, M. (1997), "Influence of the interfacial zone on the chloride diffusivity of mortars", Adv. Cement Bas. Mater., 5(3-4), 86-92. https://doi.org/10.1016/S1065-7355(96)00008-9
- Diamond, S. (2003), "Percolation due to overlapping ITZs in laboratory mortars? A microstructural evaluation", Cement Concrete Res., 33(7), 949-955. https://doi.org/10.1016/S0008-8846(02)00996-1
- Dijkstra, E.W. (1959), "A note on two problems in connexion with graphs", Numerische Mathematik, 1(1), 269-271. https://doi.org/10.1007/BF01386390
- Erdogan, S.T. (2005), "Determination of aggregate shape properties using X-ray tomographic methods and the effect of shape on concrete rheology", PhD, The University of Texas at Austin, Austin, US.
- Garboczi, E.J., Snyder, K.A., Douglas, J.F. and Thorpe, M.F. (1995), "Geometrical percolation threshold of overlapping ellipsoids", Phys. Rev. E Statist. Phys. Plasmas Fluid. Relat. Interdisc. Top., 52(1), 819-828. https://doi.org/10.1103/PhysRevE.52.819
- Hafner, S., Eckardt, S., Luther, T. and Konke, C. (2006), "Mesoscale modeling of concrete: Geometry and numerics", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
- King, C.Y. (2008), "Collision detection for ellipsoids and other quadrics", PhD, University of Hong Kong, Hong Kong.
- Lee, K.M. and Park, J.H. (2008), "A numerical model for elastic modulus of concrete considering interfacial transition zone", Cement Concrete Res., 38(3), 396-402. https://doi.org/10.1016/j.cemconres.2007.09.019
- Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
- Li, J. (2013), "Percolation thresholds of two-dimensional continuum systems of rectangles", Phys. Rev. E Statist. Nonlin. Soft Mat. Phys., 88(1), 012101. https://doi.org/10.1103/PhysRevE.88.012101
- Li, J. and O stling, M. (2016), "Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses", Physica A Statist. Mech. Its Appl., 462, 940-950. https://doi.org/10.1016/j.physa.2016.06.020
- Liao, K.Y., Chang, P.K., Peng, Y.N. and Yang, C.C. (2004), "A study on characteristics of interfacial transition zone in concrete", Cement Concrete Res., 34(6), 977-989. https://doi.org/10.1016/j.cemconres.2003.11.019
- Lutz, M.P., Monteiro, P.J.M. and Zimmerman, R.W. (1997), "Inhomogeneous interfacial transition zone model for the bulk modulus of mortar", Cement Concrete Res., 27(7), 1113-1122. https://doi.org/10.1016/S0008-8846(97)00086-0
- Ollivier, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Bas. Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
- Pan, Z., Ruan, X. and Chen, A. (2014), "Chloride diffusivity of concrete: probabilistic characteristics at meso-scale", Comput. Concrete, 13(2), 187-207. https://doi.org/10.12989/CAC.2014.13.2.187
- Pan, Z., Ruan, X. and Chen, A. (2015), "A 2-D numerical research on spatial variability of concrete carbonation depth at mesoscale", Comput. Concrete, 15(2), 231-257. https://doi.org/10.12989/CAC.2015.15.2.231
- Prokopski, G. and Halbiniak, J. (2000), "Interfacial transition zone in cementitious materials", Cement Concrete Res., 30(4), 579-583. https://doi.org/10.1016/S0008-8846(00)00210-6
- Qian, Z. (2012), "Multiscale modeling of fracture processes in cementitious materials", PhD, Delft University of Technology, Delft, The Netherlands.
- Quintanilla, J.A. and Ziff, R.M. (2007), "Asymmetry in the percolation thresholds of fully penetrable disks with two different radii", Phys. Rev. E Statist. Nonlin. Soft Mat. Phys., 76(5), 051115. https://doi.org/10.1103/PhysRevE.76.051115
- Rintoul, M.D. and Torquato, S. (1997), "Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model", J. Phys. A: Math. Gen., 30(16), L585. https://doi.org/10.1088/0305-4470/30/16/005
- Rypl, D. and Bym, T. (2012), "Geometrical modeling of concrete microstructure for the assessment of ITZ percolation", Acta Polytechnica, 52(6), 1-15.
- Samet, H. and Tamminen, M. (1988), "Efficient component labeling of images of arbitrary dimension represented by linear bintrees", IEEE Tran. Pat. Anal. Mach. Intel., 10(4), 579-586. https://doi.org/10.1109/34.3918
- Savija, B., Pacheco, J. and Schlangen, E. (2013), "Lattice modeling of chloride diffusion in sound and cracked concrete", Cement Concrete Compos., 42, 30-40. https://doi.org/10.1016/j.cemconcomp.2013.05.003
- Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
- Shane, J.D., Mason, T.O., Jennings, H.M., Garboczi, E.J. and Bentz, D.P. (2000), "Effect of the interfacial transition zone on the conductivity of Portland cement mortars", J. Am. Ceram. Soc., 83(5), 1137-1144. https://doi.org/10.1111/j.1151-2916.2000.tb01344.x
- Wang, W.P., Wang, J.Y. and Kim, M.S. (2001), "An algebraic condition for the separation of two ellipsoids", Comput. Aid. Geometric Des., 18(6), 531-539. https://doi.org/10.1016/S0167-8396(01)00049-8
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Winslow, D.N., Cohen, M.D., Bentz, D.P., Snyder, K.A. and Garboczi, E.J. (1994), "Percolation and pore structure in mortars and concrete", Cement Concrete Res., 24(1), 25-37. https://doi.org/10.1016/0008-8846(94)90079-5
- Wong, H.S. and Buenfel, N.R. (2006), "Patch microstructure in cement-based materials: Fact or artefact?", Cement Concrete Res., 36, 990. https://doi.org/10.1016/j.cemconres.2006.02.008
- Wu, K., Xu, L., Schutter, G.D., Shi, H. and Ye, G. (2015), "Influence of the interfacial transition zone and interconnection on chloride migration of portland cement mortar", J. Adv. Concr. Technol., 13(3), 169-177. https://doi.org/10.3151/jact.13.169
- Xia, W. and Thorpe, M.F. (1988), "Percolation properties of random ellipses", Phys. Rev. A, 38(5), 2650-2656. https://doi.org/10.1103/PhysRevA.38.2650
- Yang, C.C. and Su, J.K. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
- Yang, R., Gui, Q., Lemarchand, E., Fen-Chong, T. and Li, K. (2015), "Micromechanical modeling of transport properties of cement-based composites: Role of interfacial transition zone and air voids", Tran. Porous Media, 110(3), 591-611. https://doi.org/10.1007/s11242-015-0574-x
- Ye, G. (2005), "Percolation of capillary pores in hardening cement pastes", Cement Concrete Res., 35(1), 167-176. https://doi.org/10.1016/j.cemconres.2004.07.033
- Zheng, J. and Zhou, X. (2007), "Percolation of ITZs in concrete and effects of attributing factors", J. Mater. Civil Eng., 19(9), 784-790. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(784)
- Zheng, X., Iglesias, W. and Palffy-Muhoray, P. (2009), "Distance of closest approach of two arbitrary hard ellipsoids", Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 79(5), 057702. https://doi.org/10.1103/PhysRevE.79.057702
- Zheng, X. and Palffy-Muhoray, P. (2007), "Distance of closest approach of two arbitrary hard ellipses in two dimensions", Phys. Rev. E Stat. Nonlin. Soft Mat. Phys., 75(6), 061709. https://doi.org/10.1103/PhysRevE.75.061709
Cited by
- Fractal equations to represent optimized grain size distributions used for concrete mix design vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.505