참고문헌
- Bruno, L. and Mancini, G. (2002), "Importance of deck details in bridge aerodynamics", Struct. Eng. Int., 12(4), 289-294. https://doi.org/10.2749/101686602777965234
- Brusiani, F., De Miranda, S., Patruno, L., Ubertini, F. and Vaona, P. (2013), "On the evaluation of bridge deck flutter derivatives using RANS turbulence models", J. Wind Eng. Ind. Aerod., 119, 39-47. https://doi.org/10.1016/j.jweia.2013.05.002
- Chen, X. and Kareem, A. (2003), "Aeroelastic analysis of bridges: Effects of turbulence and aerodynamic nonlinearities", J. Eng. Mech., 129(8), 885-895. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(885)
- Chen, X., Matsumoto, M. and Kareem, A. (2000), "Time domain flutter and buffeting response analysis of bridges", J. Eng. Mech., 126(1), 7-16. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(7)
- Davenport, A.G., King, J.P.C. and Larose, G.L. (1992), "Taut strip model tests", Aerod. Large Brid., 113-124.
- Demartino, C. and Ricciardelli, F. (2017), "Aerodynamics of nominally circular cylinders: A review of experimental results for Civil Engineering applications", Eng. Struct., 137, 76-114. https://doi.org/10.1016/j.engstruct.2017.01.023
- Diana G., Bruni S., Cigada A. and Collina A. (1993), "Turbulence effect on flutter velocity in long span suspended bridges", J. Wind Eng. Ind. Aerod., 48(2-3), 329-342. https://doi.org/10.1016/0167-6105(93)90144-D
- Diana, G., Resta, F. and Rocchi, D. (2008), "A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain", J. Wind Eng. Ind. Aerod., 96(10), 1871-1884. https://doi.org/10.1016/j.jweia.2008.02.052
- Diana, G., Rocchi, D., Argentini, T. and Muggiasca, S. (2010), "Aerodynamic instability of a bridge deck section model: Linear and nonlinear approach to force modeling", J. Wind Eng. Ind. Aerod., 98(6), 363-374. https://doi.org/10.1016/j.jweia.2010.01.003
- Dutta, S., Panigrahi, P.K. and Muralidhar, K. (2008), "Experimental investigation of flow past a square cylinder at an angle of incidence", J. Eng. Mech., 134(9), 788-803. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:9(788)
- Fung, Y.C. (2002), An Introduction to the Theory of Aeroelasticity, Courier Corporation.
- Guo, J., Zheng, S., Zhu, J., Tang, Y. and Hong, C. (2017), "Study on post-flutter state of streamlined steel box girder based on 2 DOF coupling flutter theory", Wind Struct., 25(4), 343-360. https://doi.org/10.12989/was.2017.25.4.343
- Kovacs, I., Svensson, H. and Jordet, E. (1992), "Analytical aerodynamic investigation of cable-stayed Helgeland bridge", J. Struct. Eng., 118(1), 147-168. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(147)
- Larsen, J.W., Nielsen, S.R.K. and Krenk, S. (2007), "Dynamic stall model for wind turbine airfoils", J. Fluid Struct., 23(7), 959-982. https://doi.org/10.1016/j.jfluidstructs.2007.02.005
- Liaw, K. (2005), Simulation of flow around bluff bodies and bridge deck sections using CFD, Doctoral dissertation, University of Nottingham.
- Lysenko, D.A., Ertesvag, I.S. and Rian, K.E. (2012), "Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox", Flow Turbul. Combust., 89(4), 491-518. https://doi.org/10.1007/s10494-012-9405-0
- Mannini, C., Sbragi, G. and Schewe, G. (2016), "Analysis of self-excited forces for a box-girder bridge deck through unsteady RANS simulations", J. Wind Eng. Ind. Aerod., 63, 57-76.
- Menter, F.R., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbul. Heat Mass Trans, 4(1), 625-632.
- Nieto, F., Hernandez, S., Jurado, J.A. and Baldomir, A. (2010), "CFD practical applicaion in conceptual design of a 425 m cable-stayed bridge", Wind Struct., 13(4), 309-326. https://doi.org/10.12989/was.2010.13.4.309
- Patruno, L. (2015), "Accuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: Effects on the flutter onset velocity", Eng. Struct., 89, 49-65. https://doi.org/10.1016/j.engstruct.2015.01.034
- Reinhold, T.A., Brinch, M. and Damsgaard, A. 1992, "Wind-Tunnel tests for the Great Belt Link", Aerod. Large Brid., 255-267.
- Saha, A.K., Biswas, G. and Muralidhar, K. (2003), "Threedimensional study of flow past a square cylinder at low Reynolds numbers", Int. J. Heat Fluid Fl., 24(1), 54-66. https://doi.org/10.1016/S0142-727X(02)00208-4
- Scanlan, R.H. (1978), "The action of flexible bridges under wind, 1: Flutter theory, J. Sound Vib., 60(2), 187-199. https://doi.org/10.1016/S0022-460X(78)80028-5
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, Wiley.
- Staerdahl, J.W., Sorensen, N.N. and Nielsen, S.R.K. (2007), "Aeroelastic stability of suspension bridges using CFD", Proceedings of the IASS Symposium.
- Starossek, U., Aslan, H. and Thiesemann, L. (2009), "Experimental and numerical identification of flutter derivatives for nine bridge deck sections", Wind Struct., 12(6), 519-540. https://doi.org/10.12989/was.2009.12.6.519
- Sumer, B.M. and Fredsoe, J. (1997), "Hydrodynamics Around Cylindrical Structures", Adv. Ser. Ocean Eng.
- Tang, H., Li, Y., Wang, Y. and Tao, Q. (2017), "Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack", J. Fluid Struct., 168, 260-270.
- Wu, T. and Kareem, A. (2013), "Aerodynamics and aeroelasticity of cable-supported bridges: Identification of nonlinear features", J. Eng. Mech., 139(12), 1886-1893. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000615
- Wu, T. and Kareem, A. (2013a), "A nonlinear convolution scheme to simulate bridge aerodynamics", Comput. Struct., 128, 259-271. https://doi.org/10.1016/j.compstruc.2013.06.004
- Wu, T. and Kareem, A. (2013b), "Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes", J. Fluid Struct., 43, 347-370. https://doi.org/10.1016/j.jfluidstructs.2013.09.015
- Wu, T. and Kareem, A. (2015), "A nonlinear analysis framework for bluff-body aerodynamics: A Volterra representation of the solution of Navier-Stokes equations", J. Fluid Struct., 54, 479-502. https://doi.org/10.1016/j.jfluidstructs.2014.12.005
피인용 문헌
- Coaction of Wind and Rain Effects on Large-Span Hyperbolic Roofs vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/9942223