Acknowledgement
Supported by : Pukyong National University
References
- Benedetti, M., Fontanari, V. and Zonta, D. (2011), "Structural health monitoring of wind towers: remote damage detection using strain sensors", Smart Materi. Struct., 20, 1-13.
- Farrar, C.R. (1997), "System identification from ambient vibration measurements on a bridge", J. Sound Vib., 205(1), 1-18 https://doi.org/10.1006/jsvi.1997.0977
- Huynh, T.C., Park, J.H. and Kim, J.T. (2016), "Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring", Measurement, 88, 385-401. https://doi.org/10.1016/j.measurement.2016.03.032
- Kim, J.T. and Stubbs, N. (1995), "Model uncertainty and damage detection accuracy in plate-girder bridges", J. Struct. Eng., 121(10), 1409-1417 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1409)
- Kim, J.T., Huynh, T.C. and Lee, S.Y. (2014), "Wireless structural health monitoring of stay cables under two consecutive typhoons", Struct. Monit. Maint., 1(1), 47-67. https://doi.org/10.12989/SMM.2014.1.1.047
- Kim, J.T., Ryu, Y.S., Cho H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: Frequency-based method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
- Lee, J.J., Lee, J.W., Yia, J.H, Yun, C.B. and Jung, H.Y. (2004), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280, 555-578
- Li, H.N., Li, D.S., Ren, L., Yi, T.H., Jia, Z.G. and LI, K.P. (2016), "Structural health monitoring of innovative civil engineering structures in Mainland China", Struct. Monit. Maint., 3(1), 1-32. https://doi.org/10.12989/SMM.2016.3.1.001
- Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), "Review on innovations and applications in structural health monitoring for infrastructures", Struct. Monit. Maint., 1(1), 1-45. https://doi.org/10.12989/SMM.2014.1.1.001
- Li. Z.X. and Yang. X.M. (2008), "Damage identification for beams using ANN based on statistical property of structural response", Comput. Struct., 86(1), 64-71. https://doi.org/10.1016/j.compstruc.2007.05.034
- Martinez-Luengo, M., Lolios, A. and Wang, L. (2016), "Structural health monitoring of offshore wind turbines: A review through the statistical pattern recognition paradigm", Renew. Sust. Energ. Rev., 64, 91-105. https://doi.org/10.1016/j.rser.2016.05.085
- Nguyen, C.U., Huynh, T.C., Dang, N.L. and Kim, J.T. (2017), "Vibration-based damage alarming criteria for wind turbine towers", Struct. Monit. Maint., 4(3), 221-236. https://doi.org/10.12989/SMM.2017.4.3.221
- Nguyen, T.C., Huynh, T.C. and Kim, J.T. (2015), "Numerical evaluation for vibration-based damage detection in wind turbine tower structure", Wind Struct., 21(6), 657-675. https://doi.org/10.12989/WAS.2015.21.6.657
- Nguyen, T.C., Huynh, T.C., Yi, J.H. and Kim, J.T. (2017), "Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses", Wind Struct., 24(4), 385-403. https://doi.org/10.12989/WAS.2017.24.4.385
- Ni, Y.Q., Zhou, X.T., Ko, J.M. and Wang, B.S. (2002), "Vibration-based damage localization in Ting Kau Bridge using probabilistic neural network", Adv. Struct. Dynamics. 2, 1069-1076.
- Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
- Park, J. (2015), Annual Report on Wind Energy Industry of Korea 2015, Korea Wind Energy Industry Association
- Park, J.H., Huynh, T.C., Choi, S.H. and Kim, J.T. (2015), "Vision-based technique for bolt-loosening detection in wind turbine tower", Wind Struct., 21(6), 709-726. https://doi.org/10.12989/WAS.2015.21.6.709
- Park, J.H., Kim, J.T., Hong, D.S., Ho, D.D. and Yi, J.H. (2009), "Sequential damage detection approaches for beams using time-modal features and artificial neural networks", J. Sound Vib., 323(1-2), 451-474. https://doi.org/10.1016/j.jsv.2008.12.023
- Qu, C.X., Yi, T.H., Yang, X.M. and Li, H.N. (2017), "Spurious mode distinguish by eigensystem realization algorithm with improved stabilization diagram", Struct. Eng. Mech., 63(6), 743-750. https://doi.org/10.12989/SEM.2017.63.6.743
- Shu, J., Zhang, Z., Gonzalez, I. and Karoumi, R. (2012), "The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model", Eng. Struct., 52, 408-421.
- Sutar, M.K., Sarojrani. P. and Jayadev, R. (2015), "Neural based controller for smart detection of crack in cracked cantilever beam", Proceeding of Materials Today, 2, 2648-2653. https://doi.org/10.1016/j.matpr.2015.07.225
- Vandiver, J.K. (1977), "Detection of structural failure on fixed platforms by measurement of dynamic response", J. Petrol. Technol., 29(3), 305-310. https://doi.org/10.2118/5679-PA
- Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-466. https://doi.org/10.12989/sem.2004.17.3_4.445
Cited by
- Vibration-Based Damage Assessment in Gravity-Based Wind Turbine Tower under Various Waves vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/1406861
- Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics vol.13, pp.21, 2018, https://doi.org/10.3390/en13215791
- Big data platform for health monitoring systems of multiple bridges vol.7, pp.4, 2020, https://doi.org/10.12989/smm.2020.7.4.345