Fig. 1. Modular multilevel converter system.
Fig. 2. Single-phase equivalent circuit.
Fig. 3. Block diagram of the conventional PQ control based on PI controller.
Fig. 4. Block diagram of the proposed predictive based direct power control.
Fig. 5. Simulation waveforms of the conventional PQ control based on PI controller. (a) Bandwidth=200Hz, (b) Bandwidth=1kHz.
Fig. 6. Simulation waveforms of the proposed predictive based direct power control.
Fig. 7. Simulation waveforms of the proposed predictive based direct power control with parameters(Lo and Ro) error. (a) +50% error, (b) -50% error.
TABLE I SIMULATION CONDITION
References
- N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, "VSC-based HVDC power transmission systems: An overview," IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 592-602, Mar. 2009. https://doi.org/10.1109/TPEL.2008.2008441
- A. Nami, L. Jiaqi, F. Dijkhuizen, and G. D. Demetriades, "Modular multilevel converters for HVDC applications: Review on converter cells and functionalities," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 18-36, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2327641
- M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, "Circuit topologies, modeling, control schemes, and applications of modular multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 4-17, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2310127
- S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, "Operation, control, and applications of the modular multilevel converter: A review," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 37-53, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2309937
- Q. Tu, Z. Xu, and L. Xu, "Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters," IEEE Trans. Power Del., Vol. 26, No. 3, pp. 2009-2017, Jul. 2011. https://doi.org/10.1109/TPWRD.2011.2115258
- S. H. Kim, J. S. Lee, Y. P. Cho, and R. Y. Kim, "Circulating current control of a modular multi-level converter(MMC)-HVDC system based on VPI(Vector-PI) control for DC power network," The Transaction of The Korean Institute of Power Electronics, Vol. 22, No 3, pp. 263-269, Jun. 2017. https://doi.org/10.6113/TKPE.2017.22.3.263
- T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, "Direct power control of PWM converter without power-source voltage sensors," IEEE Trans. Ind. Appl., Vol. 34, No. 3, pp. 473-479, May 1998. https://doi.org/10.1109/28.673716
- M. Malinowksi, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, "Virtual-flux-based direct power control of three-phase PWM rectifiers," IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 1019-1027, Jul./Aug. 2001. https://doi.org/10.1109/28.936392
- M. Malinowski, M. Jasinski, and M. P. Kazmierkowski, "Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)," IEEE Trans. Ind. Electron., Vol. 51, No. 2, pp. 447-454, Apr. 2004. https://doi.org/10.1109/TIE.2004.825278
- A. Bouafia, J. P. Gaubert, and F. Krim, "Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using spacevector modulation (SVM)," IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 228-236, Jan. 2010. https://doi.org/10.1109/TPEL.2009.2028731