DOI QR코드

DOI QR Code

A Study on the Structure of Hybrid Magnetic Gear with Armature Type Rotor

전기자 형태의 회전자를 갖는 하이브리드 마그네틱 기어의 구조에 관한 연구

  • Received : 2018.09.07
  • Accepted : 2018.12.15
  • Published : 2018.12.31

Abstract

When the wind speed changes rapidly, the wind turbine is stopped for the safety of the power system and the mechanical system. At that moment, the wind turbine gearbox is damaged and broken due to the contact load of the gearbox. In addition, the problems such as increasing frictional heat and deteriorate of the brake occur, because the power of the blades is transmitted directly to the brakes. This paper proposes a hybrid magnetic gear shape that solves the problem caused by the contact of the mechanical gear, which is the power transmission device of the wind power generation system, and the power cutoff system. The shape of the hybrid magnetic gearsuitable for the wind power generation system is derived through the torque and loss analysis according to the shape of the hybrid magnetic gear by using the two dimensional finite analysis method.

풍속이 급변할 경우 전력계통 시스템과 기계시스템의 안전을 위해 풍력발전기를 제동시킨다. 이 때, 풍력발전기 내부의 기어박스에서 기어 이의 접촉하중으로 인한 기어의 손상 및 파손이 발생하며, 브레이크를 이용한 제동 시 블레이드의 동력을 그대로 전달받아 마찰열 상승, 브레이크의 성능 저하 등의 문제가 있다. 본 논문은 풍력 발전 시스템의 동력전달장치인 기계식 기어의 접촉에 의한 문제를 해결하기 위해 동력 차단 시스템을 결합시킨 하이브리드 마그네틱 기어의 형상을 제안한다. 이차원 유한해석법을 활용하여 하이브리드 마그네틱 기어의 형상에 따른 토크와 손실 분석을 통해 풍력발전 시스템에 적합한 하이브리드 마그네틱 기어의 형상을 도출하였다.

Keywords

KCTSAD_2018_v13n6_1235_f0001.png 이미지

그림 1. 풍력발전기의 구조 Fig. 1 Structure of wind turbine

KCTSAD_2018_v13n6_1235_f0002.png 이미지

그림 2. 일반적인 마그네틱 기어의 구조 Fig. 2 Structure of conventional magnetic gear

KCTSAD_2018_v13n6_1235_f0003.png 이미지

그림 3. 하이브리드 마그네틱 기어의 구조 Fig. 3 Structure of hybrid magnetic gear

KCTSAD_2018_v13n6_1235_f0004.png 이미지

그림 4. Model A, B의 내측 회전자 토크 Fig. 4 Inner rotor torque of model A and B

KCTSAD_2018_v13n6_1235_f0005.png 이미지

그림 5. Model A, B의 외측 회전자 토크 Fig. 5 Outer rotor torque of model A and B

KCTSAD_2018_v13n6_1235_f0006.png 이미지

그림 6. Model A, B의 철손 Fig. 6 Iron loss of Model A and B

KCTSAD_2018_v13n6_1235_f0007.png 이미지

그림 7. 제동 시 Model A, B의 발생 토크 Fig. 7 Torque when Model A and B stopped

표 1. Model A, B의 제원 Table 1. Specifications of model A and model B

KCTSAD_2018_v13n6_1235_t0001.png 이미지

표 2. Model A, B의 철손 Table 2. Iron loss of Model A and B

KCTSAD_2018_v13n6_1235_t0002.png 이미지

References

  1. Huh and J. Lee, "A Study on The Modeling and Operation Control of A Variable Speed Synchronous Wind Power System," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 8, 2015, pp. 935-944. https://doi.org/10.13067/JKIECS.2015.10.8.935
  2. J. Kim, Y. Park, I. Kim, and Y. Kim, "Characteristics Analysis of Induction Generator with a Change in Rotor Speed," Trans. of the Korean Institute of Electrical Engineers, vol. 60, no. 12, 2011, pp. 2225-2229. https://doi.org/10.5370/KIEE.2011.60.12.2225
  3. S. Heier, Grid Integration of Wind Energy Conversion Systems, Hoboken: John Wiley & Sons, 1998.
  4. K. Pankaj and J. Nelson, "Application Guidelines for Induction Generators," IEEE Int. Electric Machines and Drives Conf., Milwaukee, Wisconsin, USA: May 1997, pp. WC1/5.1-WC1/5.3
  5. J. Kim, "Characteristics Analysis of 3-phase Induction Generator at the Unbalanced Load Operation," Trans. of the Korean Institute of Electrical Engineers P, vol. 56, no. 3, 2007, pp. 123-128.
  6. K. Lee, W. Cho, J. Back, and I. Choy, "Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 2, 2017, pp. 301-308. https://doi.org/10.13067/JKIECS.2017.12.2.301
  7. Y. Lee, G. Lee, and Y. Nam, "Hydraulic Pitch Control device and Brake for Wind Turbines," J. of Drive and Control, vol. 8, no. 1, 2011, pp. 60-65. https://doi.org/10.7839/ksfc.2011.8.1.060
  8. J. Kim, Y. Park, and J. Kim, "Reduction of Inrush Current during Grid Interconnection of Squirrel Cage Induction Generator," Proc. of KIIEE Annual Conf., Jeongseon, Korea, May 2017, pp. 14.
  9. J. Lee, K. Lee, D. Lee, D. Lee, and S. Hwang, "Contack Stress Analysis of a Pair of Mating Spur Gears," J. of Korean Society for Precision Engineering, vol. 9, no. 4, 2010, pp. 59-65.
  10. T. Lubin, S. Mezani, and A. Rezzoug, "Analytical Computation of the Magnetic Field Distribution in a Magnetic Gear," IEEE Trans. Magnetics, vol. 46, no. 7, 2010, pp. 2611-2621. https://doi.org/10.1109/TMAG.2010.2044187
  11. E. Park, S. Kim, S. Jung, and Y. Kim, "Correlation Analysis between Air Gaps and Torque Characteristics of Magnetic Gear," In 2016 Electrical Machinery and Energy Conversion Systems Society Spring Conf. of the Korean Institute of Electrical Engineers, Jeju, Korea, Mar. 2016, pp. 223-225.
  12. K. Atallah, and D. Howe, "A Novel High-Performance Magnetic Gear," IEEE Trans. Magnetics, vol. 37, no. 4, July 2001, pp. 2844-2846. https://doi.org/10.1109/20.951324
  13. C. Kim, E. Park, S. Kim, and Y. Kim, "An Study on Pole Piece Shape for Improving Torque Ripple of Magnetic Gears," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1065-1070. https://doi.org/10.13067/JKIECS.2017.12.6.1065
  14. S. Kim, D. Kim, D. Lee, C. Gim, and Y. Kim, "Analysis of Efficiency and Loss due to Number of Poles in Magnetic Gears," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, 2018, pp. 1023-1028. https://doi.org/10.13067/JKIECS.2018.13.5.1023
  15. J. Nam, H. Ryou, and S. Cho, "Study for Characteristic of Frictional Heat Transfer in Rotating Brake System," J. of the Korea Academia-Industrial cooperation Society, vol. 18, no. 10, 2017, pp. 817-822. https://doi.org/10.5762/KAIS.2017.18.10.817