DOI QR코드

DOI QR Code

비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis

  • 정성훈 (충북대학교 건축공학과) ;
  • 강수민 (충북대학교 건축공학과)
  • Jeong, Seong-Hun (Department of Architectural Engineering, Chungbuk National University) ;
  • Kang, Su-Min (Department of Architectural Engineering, Chungbuk National University)
  • 투고 : 2018.10.04
  • 심사 : 2018.11.02
  • 발행 : 2018.12.31

초록

최근 국내에서는 고층 벽식 아파트 건설 시, 하부 주차공간과 공용공간 확보를 위하여 RC 전이슬래브 시스템을 사용하는 경우가 증가하고 있다. 하지만 두께가 얇은 RC 무량판 슬래브를 위해 개발된 설계방법 및 구조성능평가 방법을 두께가 매우 두꺼운 전이슬래브 구조설계에 그대로 사용하고 있다는 문제점이 있다. 따라서 합리적인 전이슬래브의 구조설계를 위해서는 RC 전이슬래브 시스템의 2면 전단거동 양상에 대한 명확한 분석이 필요하다. 이에 따라 본 연구에서는 전이슬래브의 두께, 콘크리트 강도, 전단경간비, 철근비 등 다양한 설계변수에 따라 비선형 FEM을 이용하여 전이슬래브의 2면 전단거동을 분석하였다. 또한 비선형 FEM 해석결과와 기존의 2면 전단강도 평가식으로 예측한 전단강도를 비교분석하여 기존 평가식의 전이슬래브 2면 전단강도 평가 유효성을 검토하였다.

Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

키워드

참고문헌

  1. Yoon, J.K., Lee, D.B., Kim, U.J., Kang, S.M. (2009) DMF(Double Mat Foundation) System Efficient Design and Practical Application of DMF(Double Mat Foundation) System with Transfer Slab, Anuual Conf. Korea Inst. Build. Constr., 9(1), pp.79-88.
  2. ACI Committee 318 (2008) Building Code Requirement for Structural Concrete (ACI318-13) and Commentary, American Concrete Institute, p.465.
  3. Ahn, S,K., Park, H.G. (2005) Shear Reinforcement for Flat Plate-Column Connections Using Lattice Bars, J. Korea Concr. Inst., 17(2), pp.191-200. https://doi.org/10.4334/JKCI.2005.17.2.191
  4. Choi, K., Shin, D., Park, H. (2014) Shear-Strength Model for Slab-Column Connections Subjected to Unbalanced Momenet, ACI Struct. J., 111(3), pp.491-502. https://doi.org/10.14359/51686533
  5. Eom, T.S., Kang, S.M., Choi, T.W., Park, H.G. (2018) Punching Shear Tests of Slabs with High-Strength Continuous Hoop Reinforcement, ACI Struct. J., 115(5), pp.1295-1306. https://doi.org/10.14359/51702231
  6. Eom, T.S., Song, J.W., Song, J.K., Kang, G.S., Yoon, J.K., Kang, S.M. (2017) Punching-Shear behavior of Slabs with Bar Truss Shear Reinforcement on Rectangular Columns, Eng. Struct., 134, pp.390-399. https://doi.org/10.1016/j.engstruct.2016.12.048
  7. Eurocode 2 (2004) Design of Concrete Structures, European Committee for Standardization.
  8. Jang, J.I., Kang, S.M., Kim, J.W. (2018) Nonlinear Numerical Analysis for Reasonable Shear Reinforcement of Flat Plate Connection, J. Inst. Constr. Technol., 37(1), pp.1-6.
  9. Kang, S.M., Kim, J.W., Choi, K.K., Park, H.G. (2016) Shear Behavior Investigation of Biaxial Hollow Slabs Through Non-linear FE Analysis, J. Archit. Inst. Korea Struct. & Constr., 32(12), pp.3-13. https://doi.org/10.5659/JAIK_SC.2016.32.12.3
  10. Kim, J.S., Shin, J.H. (2009) Mechanical Properties of Concrete with Statistical Variations, KCI Struct. J., 21(6), pp.789-796.
  11. Korean Concrete Institute (2012) Concrete Structure Design Code (KCI 2012), Korean Concrete Institute, Seoul.
  12. Lee. J-H. (2015) Prestressed Concrete, Dong Myeong Publishers, pp.85-86.
  13. Midas Information Technology Co., Ltd. (2008) Midas user's Manual, Analysis and Algorithm, Korea.
  14. Park, H.G. (1995) Nonlinear Analysis of Reinforced Concrete Members using Plasticity with Multiple Failure Criteria, Korean Concr. Inst., 7(2), pp.145-154.
  15. Park, H., Choi, K. (2007) Strength of Exterior Slab-column Connections Subjected to Unbalanced Moments, Eng. Struct., 29(6), pp.1096-1114. https://doi.org/10.1016/j.engstruct.2006.08.001
  16. Park, H., Choi, K., Chung, L. (2011) Strain -based Strength Model for Direct Punching Shear of Interior Slab-column Connections, Eng. Struct., 33(3), pp.62-173.
  17. R. von Mises (1913) Mechanik der festen Korper im plastisch deformablen Zustand, Gottin. Nachr. Math. Phys., 1, pp.582-592.
  18. Thorenfeldt, E., Tomaszewicz, A., Jenson, J.J. (1987) Mechanical Properties of High-Strength Concrete and Applications in Design, In Proc. Symp. Utilization of High-Strength Concrete, Tapir.
  19. Yoon, J.K., Kang, S.M., Kim, O.J., Lee, D.B. (2008) A Study on the Behavior and Practical Design Method for Transfer Slab used in Shear Wall Type Apartment with Piloti under Pit Level, Annual Conf. Archit. Inst. Korea, 28(1), pp.231-234.