Introduction to Design of Products based on Digital Twin Technology

디지털 트윈 기술 기반의 제품 설계 소개

  • 노유정 (부산대학교 기계공학부)
  • Published : 2018.12.03

Abstract

Keywords

References

  1. Battaia, O., A. Dolgui, and N. Guschinsky (2017) Decision support for design of reconfigurable rotary machining systems for family part production, International Journal of Production Research, 55, pp.1368-1385. https://doi.org/10.1080/00207543.2016.1213451
  2. Dean, J. (1950) Pricing policies for new products, Harv Bus Rev., 28, pp.45-53.
  3. Gockel, B. T., A. W. Tudor, M. D. Brandyberry, R. C. Penmetsa, and E. J. Tuegel. (2012) Challenges with structural life forecasting using realistic mission profiles." Proc. 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Dyn. Mater. Conf. 20th AIAA/ASME/AHS Adaptive Struct. Conf. 14th AIAA, Honolulu, HI, USA, pp. 1813.
  4. Gabor, T., L. Belzner, M. Kiermeier, M. Beck, and A. Neitz (2016) A simulation-based architecture for smart cyberphysical systems, IEEE International Conference on Autonomic Computing 374-379.
  5. Glaessgen, E. H., and D. Stargel (2012) The digital twin paradigm for future NASA and US air force vehicles." 53rd Struct. Dyn. Mater. Conf. Special Session: Digital Twin, Honolulu, HI.
  6. Grieves, M. (2014) Digital twin: manufacturing excellence through virtual factory replication, White paper.
  7. Levitt, T. (1965) Exploit the product life cycle, Harv Bus Rev., 43, pp.81-94.
  8. Rosen, R., G. V. Wichert, G. Lo, and K. D. Bettenhausen (2015) About the importance of autonomy and digital twins for the future of manufacturing, IFAC-PapersOnLine, 48, pp. 567-572. https://doi.org/10.1016/j.ifacol.2015.06.141
  9. Ryan C, Riggs, W. E. (1996) Redefining the product life cycle: the five-element product wave. Business Horizons, 39(5), pp.33-40 https://doi.org/10.1016/S0007-6813(96)90064-6
  10. Seshadri B. R., and Krishnamurthy T. 2017. "Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept." doi: 10.2514/6.2017-1675.
  11. Soderberg, R., K. Warmefjord, J. S. Carlson, and L. Lindkvist (2017) Toward a digital twin for real-time geometry assurance in individualized production, CIRP Annalsmanufacturing Technology, 66, pp.137-140. https://doi.org/10.1016/j.cirp.2017.04.038
  12. Tao, F., Cheong, J., Zhang, M., Zhang, H., Sui, F. (2018a) Digital twin-driven product design, manufacturing and service with big data, Int J Adv Manuf Technol, 94, pp.3563-3576. https://doi.org/10.1007/s00170-017-0233-1
  13. Tao, F., Sui, F.,Liu, A., Qi, Q., Zhang, M., Song, B., Guo, Stephen, C.Y., Nee, A.Y.C. (2018b) Digital twin-driven product design framework, International Journal of Production Research, https://doi.org/10.1080/00207543.2018. 1443229.
  14. Tuegel, E. J., A. R. Ingraffea, T. G. Eason, and S. M. Spottswood. 2011. Reengineering aircraft structural life prediction using a digital twin." International Journal of Aerospace Engineering, pp.1-14.
  15. Parrott, A., Warshaw, L. (2018) Industry 4.0 and the digital twin : Manufacturing meets its match (https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html)
  16. Vachalek, J., L. Bartalsky, O. Rovny, D. Sismisova, M. Morhac, and M. Loksik (2017) The digital twin of an industrial production line within the industry 4.0 concept, IEEE International conference on process control, pp.258-262.
  17. https://news.samsung.com/kr/?p=306247, 2016년 11월 16일 기사.