DOI QR코드

DOI QR Code

Comparison of the stability between branched-chain amino acid (BCAA)-coated liposome and double emulsion

분지쇄아미노산(BCAA)이 포집된 더블에멀션과 리포좀의 안정성 비교

  • Lee, YunJung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, SangYoon (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Shin, Hyerin (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kang, Guhyun (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Wi, Gihyun (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Ko, Eun Young (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Cho, Youngjae (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Choi, Mi-Jung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 이윤정 (건국대학교 축산식품생명공학과) ;
  • 이상윤 (건국대학교 축산식품생명공학과) ;
  • 신혜린 (건국대학교 축산식품생명공학과) ;
  • 강구현 (건국대학교 축산식품생명공학과) ;
  • 위기현 (건국대학교 축산식품생명공학과) ;
  • 고은영 (건국대학교 축산식품생명공학과) ;
  • 조영재 (건국대학교 축산식품생명공학과) ;
  • 최미정 (건국대학교 축산식품생명공학과)
  • Received : 2018.10.28
  • Accepted : 2018.11.22
  • Published : 2018.12.31

Abstract

This study was conducted to compare the stability between branched-chain amino acid (BCAA)-encapsulated liposome and double emulsion (DE). Liposome was produced by high-speed homogenization and ultrasonication whereas DE was prepared by homogenizing with surfactants. All samples were fixed at pH 4 and 7 and stored at 4, 25, and $40^{\circ}C$ for 5 days. Encapsulation efficiency and cumulative release rate were measured under $4^{\circ}C$ and at $25^{\circ}C$. The results showed that the size of BCAA-coated liposome was greater at pH 7 than at pH 4. The zeta-potential value of BCAA-coated liposome was greater at pH 4 than at pH 7. It was supposed that the negatively charged liposomes attracted the positively charged BCAAs at pH 4 resulting in the formation of the vesicle with smaller size. Particle size of DE was smaller than $100{\mu}m$. Encapsulation efficiencies of BCAA in DE or liposome were over 97%, approximately, and the cumulative release rates of them were below 30% for 5 days.

본 연구에서는 식품에 적용할 수 있는 코팅방법인 리포좀과 더블에멀션의 안정성을 연구하기 위해 기능성 아미노산인 BCAA를 함유한 리포좀과 더블에멀션을 제조하였다. 리포좀의 입자크기는 pH 7보다 pH 4에서 더 작게 나타났는데, 이는 양쪽성 이온인 BCAA가 pH 4에서는 양전하를, pH 7에서는 음전하를 띠기때문에 음전하인 레시틴과의 상호작용을 하여 그 크기에 차이가 있는 것으로 판단된다. 제타전위의 절댓값은 pH 7보다 pH 4에서 더 크게 나타나 pH 4에서 리포좀의 분산안정성이 더 높은 것으로 나타났다. 더블에멀션은 초기 입자의 크기가 $100{\mu}m$ 이내, 제타전위는 모두 절댓값이 30 mV 이상이었으나, 시간이 경과함에 따라 그 크기가 커지고, 제타전위의 절댓값은 감소하는 경향을 보였다. 리포좀과 더블에멀션의 BCAA 포집율은 모두 97% 이상이었고, 누적 방출율은 리포좀에서 더 크게 나타났으나 5일간 누적방출율은 30% 미만으로 나타났다. 따라서 리포좀과 더블에멀션은 높은 효율로 특정 기능성 물질을 안정적으로 포집한다는 특징을 가지며, 추후 계속적인 연구를 통해 이를 식품 산업에 적용할 수 있을 것으로 기대된다.

Keywords

SPGHB5_2018_v50n6_636_f0001.png 이미지

Fig. 1. Changes in particle size of BCAA-coated liposome depending on the storage temperatures at 4℃ (A), 25℃ (B) and 40℃ (C).

SPGHB5_2018_v50n6_636_f0002.png 이미지

Fig. 2. Zeta-potential of BCAAs depending on pH values.

SPGHB5_2018_v50n6_636_f0003.png 이미지

Fig. 3. Changes in particle size of BCAA-coated double emulsion depending on the storage temperatures at 4℃ (A), 25℃ (B) and 40℃ (C).

SPGHB5_2018_v50n6_636_f0004.png 이미지

Fig. 4. Zeta-potential value of BCAA-coated liposome on storage conditions at 4℃ (A), 25℃ (B) and 40℃ (C).

SPGHB5_2018_v50n6_636_f0005.png 이미지

Fig. 5. Zeta-potential value of BCAA-coated double emulsion on storage conditions at 4℃ (A), 25℃ (B) and 40℃ (C).

SPGHB5_2018_v50n6_636_f0006.png 이미지

Fig. 6. Encapsulation efficiency of liposome and double emulsion containing BCAA.

SPGHB5_2018_v50n6_636_f0007.png 이미지

Fig. 7. Cumulative release rate of liposome containing BCAA adjusted to pH 4 (A) and adjusted to pH 7 (B).

SPGHB5_2018_v50n6_636_f0008.png 이미지

Fig. 8. Cumulative release rate of double emulsion containing BCAA adjusted to pH 4 (A) and adjusted to pH 7 (B)

References

  1. Beattie JK, Djerdjev AM. The pristine oil/water interfaces: Surfactant-free hydroxide-charged emulsions. Angew. Chem. Int. Edit. 43: 3568-3571 (2004) https://doi.org/10.1002/anie.200453916
  2. Bryant CM, McClements DJ. Molecular basis of protein functionality with special consideration of cold-set gels derived from heatdenatured whey. Trends Food Sci. Tech. 9: 143-151 (1998) https://doi.org/10.1016/S0924-2244(98)00031-4
  3. Burns DB, Zydney AL. Buffer effects on the zeta potential of ultrafiltration membranes. J. Membrane Sci. 172: 39-48 (2000) https://doi.org/10.1016/S0376-7388(00)00315-X
  4. Colletier JP, Chaize B, Winterhalter M, Fournier D. Protein encapsulation in liposomes: Efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2: 9 (2002) https://doi.org/10.1186/1472-6750-2-9
  5. Fernstrom JD. Branched-chain amino acids and brain function. J. Nutr. 135: 1539S-1546S (2005) https://doi.org/10.1093/jn/135.6.1539S
  6. Fuchs D, Fischer J, Tumakaka F, Sadowski G. Solubility of amino acids: Influence of the pH value and the addition of alcoholic cosolvents on aqueous solubility. Ind. Eng. Chem. Res. 45: 6578-6584 (2006) https://doi.org/10.1021/ie0602097
  7. Garti N. Progress in stabilization and transport phenomena of double emulsions in food applications. LWT-Food Sci. Technol. 30: 222-235 (1997) https://doi.org/10.1006/fstl.1996.0176
  8. Garti N, Bisperink C. Double emulsions: Progress and applications. Curr. Opin. Colloid In. 3: 657-667 (1998) https://doi.org/10.1016/S1359-0294(98)80096-4
  9. Ghorbanzade T, Jafari SM, Akhavan S, Hadavi R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216: 146-152 (2017) https://doi.org/10.1016/j.foodchem.2016.08.022
  10. Keller BC. Liposomes in nutrition. Trends Food Sci. Tech. 12: 25-31 (2001) https://doi.org/10.1016/S0924-2244(01)00044-9
  11. Laine P, Kylli P, Heinonen M, Jouppila K. Storage stability of microencapsulated cloudberry (Rubus chamaemorus) phenolics. J. Agr. Food Chem. 56: 11251-11261 (2008) https://doi.org/10.1021/jf801868h
  12. Lakkis JM. Encapsulation and controlled release technologies in food systems. Blackwell Publishing, Hoboken, NJ, USA. pp. 1-12 (2007)
  13. Lee MY, Min SG, Bourgeois S, Choi MJ. Development of a novel nanocapsule formulation by emulsion diffusion combined with high hydrostatic pressure. J. Microencapsul. 26: 122-129 (2009) https://doi.org/10.1080/02652040802193006
  14. Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X. Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in $W_1/O/W_2$ double emulsion systems. Int. J. Food Sci. Tech. 47: 248-254 (2012) https://doi.org/10.1111/j.1365-2621.2011.02832.x
  15. Lim JS, Gang HJ, Yoon SW, Kim HM, Suk JW, Kim DU, Lim JK. Preparation and its stability of a coenzyme Q10 nanoemulsion by high pressure homogenization with different valve type conditions. Korean J. Food Sci. Technol. 42: 565-570 (2010)
  16. Lundholm K, Bennegard K, Zachrisson H, Lundgren F, Eden E, Moller-Loswick AC. Transport kinetics of amino acids across the resting human leg. J. Clin. Invest. 80: 763-771 (1987) https://doi.org/10.1172/JCI113132
  17. Lutz R, Aserin A, Wicker L, Garti N. Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloid. Surface B. 74: 178-185 (2009) https://doi.org/10.1016/j.colsurfb.2009.07.014
  18. McClements DJ. Food Emulsions: Principles, Practices, and Techniques. Clydesdale FM, CRC Press, New York, NY, USA. pp. 3-5 (2005)
  19. Mukai J, Tokuyama E, Ishizaka T, Okada. S, Uchida T. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions. Chem. Pharm. Bull. 55: 1581-1584 (2007) https://doi.org/10.1248/cpb.55.1581
  20. Nelson DL, Cox MM. Amino acids, peptides, and proteins. In Lehninger principles of biochemistry, Freeman W.H. & Company, New York, NY, USA. pp. 71-112 (2008)
  21. Oh SR, Lee SB, Cho KM, Choi MJ, Jin BS, Han YM, Lee YM, Shim JK. Preparation and characterization of nano-sized liposome containing proteins derived from Coptidis rhizome. Appl. Chem. Eng. 17: 52-57 (2006)
  22. O'Regan J, Mulvihill DM. Sodium caseinate-maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Res. Int. 43: 224-231 (2010) https://doi.org/10.1016/j.foodres.2009.09.031
  23. Rashidinejad A, Birch EJ, Sun-Waterhouse DS, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 156: 176-183 (2014) https://doi.org/10.1016/j.foodchem.2014.01.115
  24. Risch SJ, Reineccius GA. Encapsulation and controlled release of food ingredients. ACS Sym. Series 590, Washington DC, USA (1995)
  25. Sapei L, Naqvi MA, Rousseau D. Stability and release properties of double emulsions for food applications. Food Hydrocolloid. 27: 316-323 (2012) https://doi.org/10.1016/j.foodhyd.2011.10.008
  26. Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 134: 1583S-1587S (2004) https://doi.org/10.1093/jn/134.6.1583S
  27. Su J, Flanagan J, Hemar Y, Singh H. Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocolloid. 20: 261-268 (2006) https://doi.org/10.1016/j.foodhyd.2004.03.010
  28. Su J, Flanagan J, Singh H. Improving encapsulation efficiency and stability of water-in-oil-in-water emulsions using a modified gum arabic (Acacia(sen) SUPER $GUM^{TM}$). Food Hydrocolloid. 22: 112-120 (2008) https://doi.org/10.1016/j.foodhyd.2007.03.005
  29. Vilasmil-Sanchez S, Rabasco AM, Gonzalez-Rodriguez ML. Thermal and 31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in phosphatidylcholine/cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloid. Surface B. 105: 14-23 (2013) https://doi.org/10.1016/j.colsurfb.2012.12.019
  30. Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in obesity: Therapeutic prospects. Trends Pharmacol. Sci. 37: 714-727 (2016) https://doi.org/10.1016/j.tips.2016.05.004