Fig. 1. Changes in particle size of BCAA-coated liposome depending on the storage temperatures at 4℃ (A), 25℃ (B) and 40℃ (C).
Fig. 2. Zeta-potential of BCAAs depending on pH values.
Fig. 3. Changes in particle size of BCAA-coated double emulsion depending on the storage temperatures at 4℃ (A), 25℃ (B) and 40℃ (C).
Fig. 4. Zeta-potential value of BCAA-coated liposome on storage conditions at 4℃ (A), 25℃ (B) and 40℃ (C).
Fig. 5. Zeta-potential value of BCAA-coated double emulsion on storage conditions at 4℃ (A), 25℃ (B) and 40℃ (C).
Fig. 6. Encapsulation efficiency of liposome and double emulsion containing BCAA.
Fig. 7. Cumulative release rate of liposome containing BCAA adjusted to pH 4 (A) and adjusted to pH 7 (B).
Fig. 8. Cumulative release rate of double emulsion containing BCAA adjusted to pH 4 (A) and adjusted to pH 7 (B)
References
- Beattie JK, Djerdjev AM. The pristine oil/water interfaces: Surfactant-free hydroxide-charged emulsions. Angew. Chem. Int. Edit. 43: 3568-3571 (2004) https://doi.org/10.1002/anie.200453916
- Bryant CM, McClements DJ. Molecular basis of protein functionality with special consideration of cold-set gels derived from heatdenatured whey. Trends Food Sci. Tech. 9: 143-151 (1998) https://doi.org/10.1016/S0924-2244(98)00031-4
- Burns DB, Zydney AL. Buffer effects on the zeta potential of ultrafiltration membranes. J. Membrane Sci. 172: 39-48 (2000) https://doi.org/10.1016/S0376-7388(00)00315-X
- Colletier JP, Chaize B, Winterhalter M, Fournier D. Protein encapsulation in liposomes: Efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2: 9 (2002) https://doi.org/10.1186/1472-6750-2-9
- Fernstrom JD. Branched-chain amino acids and brain function. J. Nutr. 135: 1539S-1546S (2005) https://doi.org/10.1093/jn/135.6.1539S
- Fuchs D, Fischer J, Tumakaka F, Sadowski G. Solubility of amino acids: Influence of the pH value and the addition of alcoholic cosolvents on aqueous solubility. Ind. Eng. Chem. Res. 45: 6578-6584 (2006) https://doi.org/10.1021/ie0602097
- Garti N. Progress in stabilization and transport phenomena of double emulsions in food applications. LWT-Food Sci. Technol. 30: 222-235 (1997) https://doi.org/10.1006/fstl.1996.0176
- Garti N, Bisperink C. Double emulsions: Progress and applications. Curr. Opin. Colloid In. 3: 657-667 (1998) https://doi.org/10.1016/S1359-0294(98)80096-4
- Ghorbanzade T, Jafari SM, Akhavan S, Hadavi R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 216: 146-152 (2017) https://doi.org/10.1016/j.foodchem.2016.08.022
- Keller BC. Liposomes in nutrition. Trends Food Sci. Tech. 12: 25-31 (2001) https://doi.org/10.1016/S0924-2244(01)00044-9
- Laine P, Kylli P, Heinonen M, Jouppila K. Storage stability of microencapsulated cloudberry (Rubus chamaemorus) phenolics. J. Agr. Food Chem. 56: 11251-11261 (2008) https://doi.org/10.1021/jf801868h
- Lakkis JM. Encapsulation and controlled release technologies in food systems. Blackwell Publishing, Hoboken, NJ, USA. pp. 1-12 (2007)
- Lee MY, Min SG, Bourgeois S, Choi MJ. Development of a novel nanocapsule formulation by emulsion diffusion combined with high hydrostatic pressure. J. Microencapsul. 26: 122-129 (2009) https://doi.org/10.1080/02652040802193006
-
Li B, Jiang Y, Liu F, Chai Z, Li Y, Li Y, Leng X. Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in
$W_1/O/W_2$ double emulsion systems. Int. J. Food Sci. Tech. 47: 248-254 (2012) https://doi.org/10.1111/j.1365-2621.2011.02832.x - Lim JS, Gang HJ, Yoon SW, Kim HM, Suk JW, Kim DU, Lim JK. Preparation and its stability of a coenzyme Q10 nanoemulsion by high pressure homogenization with different valve type conditions. Korean J. Food Sci. Technol. 42: 565-570 (2010)
- Lundholm K, Bennegard K, Zachrisson H, Lundgren F, Eden E, Moller-Loswick AC. Transport kinetics of amino acids across the resting human leg. J. Clin. Invest. 80: 763-771 (1987) https://doi.org/10.1172/JCI113132
- Lutz R, Aserin A, Wicker L, Garti N. Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloid. Surface B. 74: 178-185 (2009) https://doi.org/10.1016/j.colsurfb.2009.07.014
- McClements DJ. Food Emulsions: Principles, Practices, and Techniques. Clydesdale FM, CRC Press, New York, NY, USA. pp. 3-5 (2005)
- Mukai J, Tokuyama E, Ishizaka T, Okada. S, Uchida T. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions. Chem. Pharm. Bull. 55: 1581-1584 (2007) https://doi.org/10.1248/cpb.55.1581
- Nelson DL, Cox MM. Amino acids, peptides, and proteins. In Lehninger principles of biochemistry, Freeman W.H. & Company, New York, NY, USA. pp. 71-112 (2008)
- Oh SR, Lee SB, Cho KM, Choi MJ, Jin BS, Han YM, Lee YM, Shim JK. Preparation and characterization of nano-sized liposome containing proteins derived from Coptidis rhizome. Appl. Chem. Eng. 17: 52-57 (2006)
- O'Regan J, Mulvihill DM. Sodium caseinate-maltodextrin conjugate stabilized double emulsions: Encapsulation and stability. Food Res. Int. 43: 224-231 (2010) https://doi.org/10.1016/j.foodres.2009.09.031
- Rashidinejad A, Birch EJ, Sun-Waterhouse DS, Everett DW. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 156: 176-183 (2014) https://doi.org/10.1016/j.foodchem.2014.01.115
- Risch SJ, Reineccius GA. Encapsulation and controlled release of food ingredients. ACS Sym. Series 590, Washington DC, USA (1995)
- Sapei L, Naqvi MA, Rousseau D. Stability and release properties of double emulsions for food applications. Food Hydrocolloid. 27: 316-323 (2012) https://doi.org/10.1016/j.foodhyd.2011.10.008
- Shimomura Y, Murakami T, Nakai N, Nagasaki M, Harris RA. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 134: 1583S-1587S (2004) https://doi.org/10.1093/jn/134.6.1583S
- Su J, Flanagan J, Hemar Y, Singh H. Synergistic effects of polyglycerol ester of polyricinoleic acid and sodium caseinate on the stabilisation of water-oil-water emulsions. Food Hydrocolloid. 20: 261-268 (2006) https://doi.org/10.1016/j.foodhyd.2004.03.010
-
Su J, Flanagan J, Singh H. Improving encapsulation efficiency and stability of water-in-oil-in-water emulsions using a modified gum arabic (Acacia(sen) SUPER
$GUM^{TM}$ ). Food Hydrocolloid. 22: 112-120 (2008) https://doi.org/10.1016/j.foodhyd.2007.03.005 - Vilasmil-Sanchez S, Rabasco AM, Gonzalez-Rodriguez ML. Thermal and 31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in phosphatidylcholine/cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloid. Surface B. 105: 14-23 (2013) https://doi.org/10.1016/j.colsurfb.2012.12.019
- Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in obesity: Therapeutic prospects. Trends Pharmacol. Sci. 37: 714-727 (2016) https://doi.org/10.1016/j.tips.2016.05.004