DOI QR코드

DOI QR Code

Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli

시가 독소 생성 대장균의 제어를 위한 박테리오파지의 분리와 특성 분석

  • Lim, Ga-Yeon (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ;
  • Park, Do Won (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ;
  • Lee, Young-Duck (Department of Food Science and Engineering, Seowon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
  • Received : 2018.08.28
  • Accepted : 2018.10.29
  • Published : 2018.12.31

Abstract

Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacterium. To control STEC, the characteristics of the ECP33 and NOECP91 coliphages, which belong to the Myoviridae family, were analyzed. The host inhibition range for a total of 44 STEC strains was 45.5% for ECP33 and 65.9% for NOECP91. ECP33 and NOECP91 were relatively stable at $65^{\circ}C$, 50 ppm of sodium hyperchlorite, and a pH value of 4-10. However, the two phages were susceptible to a temperature of $70^{\circ}C$. NOECP91 was killed within 1 h after exposure to 30% ethanol, but ECP33 showed high tolerance even after exposure to 70% ethanol for 1 h. Interestingly, the inhibition of STEC growth according to the multiplicity of infection of 0.1 was confirmed until no growth was observed after 10 hours of culture with the phages. Therefore, the ECP33 and NOECP91 phages may be applied as a biological control agent for Shiga toxin-producing E. coli.

본 연구는 시가독소 생성 대장균(STEC)를 제어하기 위하여 하천수 시료로부터 넓은 숙주저해범위를 갖는 ECP33 파지와 NOECP91 파지를 분리, 선별하였다. 총 44주의 STEC균주에 대해 ECP33 파지는 약 45.5%와 NOECP91 파지는 약 65.9%로 숙주저해특성을 가지는 것으로 나타났다. 형태학적 특성을 확인한 결과 모두 Myoviridae family에 속하였다. 환경에 대한 안정성 분석을 진행한 결과, 두 파지 모두 50 ppm 농도의 차아염소산 및 pH 4-10의 pH환경에 대해서는 최소 30분까지 비교적 안정한 것으로 나타났다. 반면, $70^{\circ}C$의 고온에서는 NOECP91 파지는 15분 내에, ECP33 파지는 30분 처리 시에 대부분 사멸하고, 유기용매(EtOH) 환경에서 NOECP91 파지는 30% 에탄올 1시간 처리에 모두 사멸하였으나, ECP33파지의 경우 70% EtOH/에탄올 1시간 처리에도 2 log PFU/mL 미만의 감소율을 보여 온도와 유기용매(EtOH) 환경에 대해 ECP33 파지가 NOECP91 파지보다 안정적인 것으로 나타났다. 아울러 분리된 ECP33 파지와 NOECP91 파지를 MOI 0.1 조건에 따른 STEC 균주 생육억제 정도를 분석한 결과, 배양 10시간대까지 생육억제가 이루어지는 것을 확인하였다. 따라서 본 연구를 통해 분리된 ECP33 파지와 NOECP91 파지는 시가독소 생성 대장균의 생물학적 제어제로서 적용이 가능할 것으로 사료된다.

Keywords

SPGHB5_2018_v50n6_594_f0001.png 이미지

Fig. 2. Stability of ECP33 and NOECP91 at (A) 65 and (B)70℃.

SPGHB5_2018_v50n6_594_f0002.png 이미지

Fig. 3. Stability of ECP33 and NOECP91 under various pH (A) and ethanol (B) conditions for 30 min and 1 h.

SPGHB5_2018_v50n6_594_f0003.png 이미지

Fig. 4. Stability of ECP33 and NOECP91 at (A) 50 ppm of NaClO and (B) 100 ppm of NaClO.

SPGHB5_2018_v50n6_594_f0004.png 이미지

Fig. 5. Growth inhibition using bacteriophage for E. coli NCCP 13930 (O157:H7) and E. coli NCCP 13937 (O103).

SPGHB5_2018_v50n6_594_f0005.png 이미지

Fig. 1. Transmission Electron Microscopy micrographs of (A) ECP33 and (B) NOECP91.

Table 1. Host spectrum of ECP33 and NOECP91 isolated for shiga-toxin producing E .coli

SPGHB5_2018_v50n6_594_t0001.png 이미지

References

  1. Ackermann HW. Bacteriophage observations and evolution. Res. Microbiol. 154: 245-251 (2003) https://doi.org/10.1016/S0923-2508(03)00067-6
  2. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA. Non-O157 shiga toxin-producing Escherichia coli infections in the United States, 1983-2002. J. Infect. Dis. 192: 1422-1429 (2005) https://doi.org/10.1086/466536
  3. Brussow H. Phage therapy: The Escherichia coli experience. Microbiol. 151: 2133-2140 (2005) https://doi.org/10.1099/mic.0.27849-0
  4. Buzrul S, Ozturk P, Alpas H, Akcelik M. Thermal and chemical inactivation of lactococcal bacteriophages. LWT-Food Sci. Technol. 40: 1671-1677 (2007) https://doi.org/10.1016/j.lwt.2007.01.002
  5. Dini C, Urraza PJ. Isolation and selection of coliphages as potential biocontrol agents of enterohemorrhagic and shiga toxin-producing E. coli (EHEC and ETEC) in cattle. J. Appl. Microbiol. 109: 873-887 (2010) https://doi.org/10.1111/j.1365-2672.2010.04714.x
  6. Frank C, Werber D, Cramer JP, Askar M, Faber M, Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M. Epidemic profile of shiga-toxin-producing Escherichia coli O104: H4 outbreak in Germany. New Eng. J. Med. 365: 1771-1780 (2011) https://doi.org/10.1056/NEJMoa1106483
  7. Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL. Increased recognition of non-O157 shiga toxin-producing Escherichia coli infections in the United States during 2000-2010: Epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10: 453-460 (2013) https://doi.org/10.1089/fpd.2012.1401
  8. Guglielmotti DM, Mercanti DJ, Reinheimer JA, Quiberoni Adel L. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages. Front. Microbiol. 2: 282 (2011)
  9. Hendrix RW. Bacteriophage genomics. Curr. Opin. Microbiol. 6: 506-511 (2003) https://doi.org/10.1016/j.mib.2003.09.004
  10. Joczyk E, Kak M, Mizybrodzki R, Gorski A. The influence of external factors on bacteriophages. Folia Microbiol. 56: 191-200 (2011) https://doi.org/10.1007/s12223-011-0039-8
  11. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol 2: 123-140 (2004) https://doi.org/10.1038/nrmicro818
  12. Karch H, Denamur E, Dobrindt U, Finlay BB, Hengge R, Johannes L, Ron EZ, Tonjum T, Sansonetti PJ, Vicente M. The enemy within us: Lessons from the 2011 European Escherichia coli O104: H4 outbreak. EMBO Mol. Med. 4: 841-848 (2012) https://doi.org/10.1002/emmm.201201662
  13. Khakhria R, Duck D, Lior H. Extended phage-typing scheme for Escherichia coli 0157: H7. Epidemiol. Infect. 105: 511-520 (1990) https://doi.org/10.1017/S0950268800048135
  14. Kim JY. Characterization of bacteriophage for enteroheamorrhagic E. coli and application as sanitizer. MS thesis, Gachon University, Sungnam, Korea (2013)
  15. Kim EJ, Chang HJ, Kwak SJ, Park JH. Virulence factors and stability of coliphages specific to Escherichia coli O157:H7 and to various E. coli infection. J. Microbiol. Biotechnol. 26: 2060-2065 (2016a) https://doi.org/10.4014/jmb.1609.09039
  16. Kim MJ, Kim SH, Kim TS, Kee HY, Seo JJ, Kim ES, Park JT, Chung JK, Lee J. Identification of shiga toxin-producing E. coli isolated from diarrhea patients and cattle in Gwangju area, Korea. J. Bacteriol. Virol. 39: 29-39 (2009) https://doi.org/10.4167/jbv.2009.39.1.29
  17. Kim EJ, Lee H, Lee JH, Ryu S, Park JH. Morphological features and lipopolysaccharide attachment of coliphages specific to Escherichia coli O157: H7 and to a broad range of E. coli hosts. Appl. Biol. Chem. 59: 109-116 (2016b) https://doi.org/10.1007/s13765-015-0130-y
  18. Law D. Virulence factors of Escherichia coli O157 and other shiga toxin-producing E. coli. J. Appl. Microbiol. 88: 729-745 (2000) https://doi.org/10.1046/j.1365-2672.2000.01031.x
  19. Lee YD, Kim JY, Park JH. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control 34: 255-260 (2013) https://doi.org/10.1016/j.foodcont.2013.04.043
  20. Lee YD, Park JH. Isolation and characterization of temperate phages in Enterococcus faecium from Sprouts. Korean J. Food Sci. Technol. 46: 323-327 (2014) https://doi.org/10.9721/KJFST.2014.46.3.323
  21. Lee YD, Park JH. Characterization and application of phages isolated from sewage for reduction of Escherichia coli O157:H7 in biofilm. LWT-Food Sci. Technol. 60: 571-577 (2015) https://doi.org/10.1016/j.lwt.2014.09.017
  22. Lienemann T, Kyyhkynen A, Halkilahti J, Haukka K, Siitonen A. Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA. BMC Microbiol. 15: 131 (2015) https://doi.org/10.1186/s12866-015-0467-8
  23. Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Yeung DH, Kirk MD. Global incidence of human shiga toxin-producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11: 447-455 (2014) https://doi.org/10.1089/fpd.2013.1704
  24. Marks T, Sharp R. Bacteriophages and biotechnology: A review. J. Chem. Tech. Biot. 75: 6-17 (2000) https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<6::AID-JCTB157>3.0.CO;2-A
  25. Mathusa EC, Chen Y, Enache E, Hontz L. Non-O157 shiga toxinproducing Escherichia coli in foods. J. Food Protect. 73: 1721-1736 (2010) https://doi.org/10.4315/0362-028X-73.9.1721
  26. Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann HW. Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: Siphoviruses with triplex-forming sequences and the longest known tails. J. Mol. Biol. 378: 468-480 (2008) https://doi.org/10.1016/j.jmb.2008.02.018
  27. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201 (1998) https://doi.org/10.1128/CMR.11.1.142
  28. Nakao H, Kataoka C, Kiyokawa N, Fujimoto J, Yamasaki S, Takeda T. Monoclonal antibody to shiga toxin 1, which blocks receptor binding and neutralizes cytotoxicity. Microbiol. Immunol. 46: 777-780 (2002) https://doi.org/10.1111/j.1348-0421.2002.tb02764.x
  29. O'Flynn G, Ross RP, Fitzgerald GF, Coffey A. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70: 3417-3424 (2004) https://doi.org/10.1128/AEM.70.6.3417-3424.2004
  30. Oliveira A, Sillankorva S, Quinta R, Henriques A, Sereno R, Azeredo J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J. Appl. Microbiol. 106: 1919-1927 (2009) https://doi.org/10.1111/j.1365-2672.2009.04145.x
  31. Raya RR, Varey P, Oot RA, Dyen MR, Callaway TR, Edrington TS, Kutter EM, Brabban AD. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157: H7 levels in sheep. Appl. Environ. Microbiol. 72: 6405-6410 (2006) https://doi.org/10.1128/AEM.03011-05
  32. Sanekata T, Fukuda T, Miura T, Morino H, Lee C, Maeda K, Araki K, Otake T, Kawahata T, Shibata T. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol Sci. 15: 45-49 (2010) https://doi.org/10.4265/bio.15.45
  33. Santos TMA, Gilbert RO, Caixeta LS, Machado VS, Teixeira LM, Bicalho RC. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics. J. Dairy Sci. 93: 105-114 (2010) https://doi.org/10.3168/jds.2009-2299
  34. Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage 11 and 12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl. Environ. Microbiol. 73: 347-352 (2007) https://doi.org/10.1128/AEM.01616-06
  35. Smith JL, Fratamico PM, Gunther IV NW. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 86: 145-197 (2014)
  36. Sulakvelidze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob. Agents Ch. 45: 649-659 (2001) https://doi.org/10.1128/AAC.45.3.649-659.2001
  37. Tzipilevich E, Habusha M, Ben-Yehuda S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168: 186-199 (2017) https://doi.org/10.1016/j.cell.2016.12.003