DOI QR코드

DOI QR Code

Fortification of γ-aminobutyric acid and bioactive compounds in whey by co-fermentation using Bacillus subtilis and Lactobacillus plantarum

유청을 이용한 Bacillus subtilis와 Lactobacillus plantarum의 혼합발효를 통한 γ-aminobutyric acid와 생리활성물질 강화

  • Kim, Geun-young (Department of Food Science and Technology, Keimyung University) ;
  • Lim, Jong-soon (The Center for Traditional Microorganism Resource (TMR), Keimyung University) ;
  • Lee, Sam-pin (Department of Food Science and Technology, Keimyung University)
  • Received : 2018.09.05
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

Biologically active substances including gamma-aminobutryric acid (GABA) were added into whey by co fermentation using Bacillus subtilis HA and Lactobacillus plantarum EJ2014. The first fermentation using B. subtilis HA with 5% monosodium glutamate (MSG) and 2% glucose enhanced the production of poly-${\gamma}$-glutamic acid (PGA), resulting in higher consistency of $4.09Pas^n$ as well as whey protein peptides. After the second fermentation using L. plantarum EJ2014, the remaining MSG (3.40%) as a precursor was completely converted to 2.21% GABA. Furthermore, the lactose content in whey decreased from 6.73 to 3.68% after co-fermentation, and the tyrosine content increased from 20.47 to 38.24%. Peptides derived of whey proteins were confirmed by SDS-PAGE. Viable cell counts of B. subtilis and L. plantarum were 5.83 log CFU/mL and 9.20 log CFU/mL, respectively. Thus, co-fermentation of whey could produce the novel food ingredient fortified with biologically active compounds including GABA, ${\gamma}$-PGA, peptides, and probiotics.

본 연구는 모짜렐라 치즈 제조과정에서 분리된 유청을 B. subtilis HA와 L. plantarum EJ2014의 혼합 발효를 통해 ${\gamma}$-PGA, GABA 등의 기능성 물질이 강화된 발효물을 생산하고자 하였다. 유청 B. subtilis 발효 1일차의 시료 분석결과, pH는 6.51, 산도는 0.32%, 생균수는 8.39 log CFU/mL을 나타냈으며, 점질물과 점조도는 각각 6.06%와 $4.09Pas^n$로 발효 전보다 유의적으로 증가하였다. 2차 L. plantarum 발효를 통해 유청 혼합발효물의 최종 pH는 4.57까지 감소하였고 산도는 L. plantarum 발효 1일째 1.39%로 증가하여 최종 산도는 1.73%를 나타내었다. B. subtilis 생균수는 2차 L. plantarum 발효가 진행됨에 따라 5.83 log CFU/mL까지 감소하였으나 L. plantarum 생균수는 5.73 log CFU/mL에서 L. plantarum 발효 1일째 9.08 log CFU/mL로 급격히 증가한 후 L. plantarum 발효 7일까지 유지하였다. TLC 정성분석한 결과 L. plantarum 발효 5일 이후 MSG가 모두 소진되어 GABA로 전환되는 것을 확인할 수 있었다. HPLC 정량분석으로 MSG는 L. plantarum 발효 초기 3.40%에서 L. plantarum 발효 7일째 거의 소진 되면서 혼합발효물의 GABA 함량은 2.21%를 보였다. 환원당과 젖당 함량은 각각 발효 전 11.07과 6.73%에서 L. plantarum 발효 7일째 각각 4.97과 3.68%로 크게 감소하는 것을 보였다. 타이로신 함량은 발효가 진행되는 동안 증가되어 L. plantarum 발효 7일째 38.24 mg%를 나타내었다. 단백질 가수분해 정도를 확인하기 위해 SDS-PAGE를 통해 발효 후 유청 단백질들이 대부분 가수분해되어 저분자화되는 것을 확인하였다. 유청의 발효 전후에 따른 항산화 활성을 측정한 결과 ABTS $RC_{50}$값은 26.81 mg/g에서 발효 후 8.78 mg/g, DPPH $RC_{50}$값 또한 발효 전 17.58 mg/g에서 발효 후 10.38 mg/g으로 감소하면서 혼합발효를 통해 전자 공여능이 향상되는 것으로 확인되었다.

Keywords

SPGHB5_2018_v50n6_572_f0001.png 이미지

Fig. 1. Changes in the (A) B. subtilis and (B) L. plantarum viable cell count in whey co-fermented by B. subtilis HA and L. plantarum EJ2014.

SPGHB5_2018_v50n6_572_f0002.png 이미지

Fig. 2. Changes in (A) tyrosine content and (B) SDS-PAGE pattern in the whey co-fermented by B. subtilis HA and L. plantarum EJ2014.

SPGHB5_2018_v50n6_572_f0003.png 이미지

Fig. 3. Changes in (A) gamma-aminobutryric acid (GABA) production (TLC analysis) and (B) monosodium glutamate (MSG) and GABA contents in the whey co-fermented by B. subtilis HA and L. plantarum EJ2014.

Table 1. Physicochemical properties of the whey

SPGHB5_2018_v50n6_572_t0001.png 이미지

Table 2. Effect of monosodium glutamate (MSG) concentration on the physicochemical properties and viable cell counts in whey fermented by B. subtilis for 3 days

SPGHB5_2018_v50n6_572_t0002.png 이미지

Table 3. Changes in the pH, reducing sugar, acidity in whey co-fermented by B. subtilis HA and L. plantarum EJ2014

SPGHB5_2018_v50n6_572_t0003.png 이미지

Table 4. ABTS and DPPH radical scavenging activities in whey co-fermented by B. subtilis HA and L. plantarum EJ2014

SPGHB5_2018_v50n6_572_t0004.png 이미지

References

  1. Aguilar-Toal JE, Santiago-Lpez L, Peres CM, Peres C, Garcia HS, Vallejo-Cordoba B, Gonzlez-Crdova AF, Hernndez-Mendoza A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci. 100: 65-75 (2017) https://doi.org/10.3168/jds.2016-11846
  2. Anne P. Antioxidative peptides derived from milk proteins. Int. Dairy J. 16: 1306-1314 (2006) https://doi.org/10.1016/j.idairyj.2006.06.005
  3. Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 11: 419-421 (2000) https://doi.org/10.1016/S0924-2244(01)00027-9
  4. Bao J, Zhang X, Zheng JH, Ren DF, Lu J. Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random-centroid optimization. Food Chem. 30: 64-72 (2018)
  5. Beaulieu J, Dubuc R, Beaudet N, Dupont C, Lemieux P. Immunomodulation by a malleable matrix composed of fermented whey proteins and lactic acid bacteria. J. Med. Food 10: 67-72 (2007) https://doi.org/10.1089/jmf.2006.231
  6. Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 20: 4785-4792 (2000)
  7. Cagri-Mehmetoglu A, Kusakli S, van de Venter M. Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. J. Dairy Sci. 95: 3643-3649 (2012) https://doi.org/10.3168/jds.2012-5385
  8. Carr FJ, Chil D, Maida N. The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 28: 281-370 (2002) https://doi.org/10.1080/1040-840291046759
  9. Cho HB, Roy JK, Park WJ, Jeon1 BO, Kim YW. Overproduction of a ${\gamma}$-glutamyltranspeptidase from Bacillus amyloliquefaciens in Bacillus subtilis through medium optimization. Korean J. Food Sci. Technol. 49: 610-616 (2017)
  10. Choi JW. Optimized production of poly-${\gamma}$-glutamic acid and ${\gamma}$-amino butyric acid from Dendropanax morbifera extracts by Bacillus subtilis and Lactobacillus plantarum. MS thesis, Keimyung University, Daegu, Korea (2016)
  11. Chuang CY, Shi YC, You HP, Lo YH, Pan TM. Antidepressant effect of GABA-rich monascus-fermented product on forced swimming rat model. J. Agr. Food Chem. 59: 3027-3034 (2011) https://doi.org/10.1021/jf104239m
  12. Gallardo-Escamilla FJ, Kelly AL, Delahunty CM. Sensory characteristics and related volatile flavor compound profiles of different types of whey. J. Dairy Sci. 88: 2689-2699 (2005) https://doi.org/10.3168/jds.S0022-0302(05)72947-7
  13. Inoue M. Glutathionists in the battlefield of gamma-glutamyl cycle. Arch. Biochem. Biophys. 595: 61-63 (2016) https://doi.org/10.1016/j.abb.2015.11.023
  14. Jakubowicz D, Froy O, Ahrn B, Boaz M, Landau Z, Bar-Dayan Y, Ganz T, Barnea M, Wainstein J. Incretin, insulinotropic and glucose-lowering effects of whey protein pre-load in type 2 diabetes: a randomised clinical trial. Diabetologia 57: 1807-1811 (2014) https://doi.org/10.1007/s00125-014-3305-x
  15. Jeong SJ, Yang HJ, Jeong SY, Jeong DY. Identification of characterization and statistical optimization of constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food. Korean. J. Microbiol. 51: 48-60 (2015) https://doi.org/10.7845/kjm.2015.5004
  16. Kilshaw PJ, Heppell LM, Ford JE. Effects of heat treatment of cow's milk and whey on the nutritional quality and antigenic properties. Arch. Dis. Child. 57: 842-847 (1982) https://doi.org/10.1136/adc.57.11.842
  17. Kim DS. Study on the condition of fermentation in lactic acid bacteria for the production of ${\gamma}$-aminobutyric acid. MS thesis, Hannam University, Deajeon, Korea (2009)
  18. Kim SH. Studies on production of health beverage using whey protein and whey. MS thesis, Konkuk University, Seoul, Korea (2011)
  19. Kim SH. Quality characteristics of whey Makgeolli by Kluyveromyces marxianus. MS thesis, Sunchon National University, Sunchon, Korea (2015)
  20. Kim DH, Jeong D, Kang IB, Kim H, Song KY, Seo KH. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-dietinduced obesity: direct reduction of cholesterol and upregulation of PPAR-${\alpha}$ in adipose tissue. Mol. Nutr. Food Res. 61: 1700252 (2017) https://doi.org/10.1002/mnfr.201700252
  21. Kim SR, Kim MJ, Lee HH, Seo MJ, Kang BW, Joo WH, Park JU, Rhu EJ, Hwang YH, Jeong YK. Fibrinolytic activity and antioxidant effects of the newly developed agabean fermented of product produced by Bacillus sp. J. Life Sci. 20: 1711-1717 (2010) https://doi.org/10.5352/JLS.2010.20.11.1711
  22. Kimura Y, Sumiyoshi M, Kobayashi T. Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice. J. Nutr. 144: 27-32 (2014) https://doi.org/10.3945/jn.113.180406
  23. Komastsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22: 497-504 (2005) https://doi.org/10.1016/j.fm.2005.01.002
  24. Kook MC, Cho SC. Production of GABA (gamma aminobutyric acid) by lactic acid bacteria. Korean J. Food Sci. An. 33: 377-389 (2013) https://doi.org/10.5851/kosfa.2013.33.3.377
  25. Kwon HY, Kim YS, Kwon GS, Kwon GS, Sohn HY. Isolation of immuno-stimulating strain Bacillus pumilus JB-1 from Chungkook-jang and fermentational characteristics of JB-1. J. Microbiol. Biotechnol. 32: 291-296 (2004)
  26. Kwon SY, Lee SP. Enrichment of gamma-aminobutyric acid (GABA) in old antler extract fermented by Lactobacillus plantarum. Korean J. Food Sci. Technol. 50: 37-43 (2018)
  27. Laroute V, Yasaro C, Narin W, Mazzoli R, Pessione E, Cocaign-Bousquet M, Loubire P. GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Front. Microbiol. 7: 1050 (2016)
  28. Lee HS, Kwon SY, Lee SO, Lee SP. Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-aminobutyric acid using Lactobacillus plantarum. Korean J. Food Preserv. 23: 326-334 (2016) https://doi.org/10.11002/kjfp.2016.23.3.326
  29. Lee SW, Park HJ, Park SH, Kim N, Hong S. Immunomodulatory effect of poly-${\gamma}$-glutamic acid derived from Bacillus subtilis on natural killer dendritic cells. Biochem. Biophys. Res. Commun. 443: 413-421 (2014) https://doi.org/10.1016/j.bbrc.2013.11.097
  30. Lim JS, Lee SP. Production of set-type yogurt fortified with peptide and ${\gamma}$-aminobutyric acid by mixed fermentation using Bacillus subtilis and Lactococcus lactis. Korean J. Food Sci. Technol. 46: 162-172 (2014)
  31. Luz C, Izzo L, Graziani G, Gaspari A, Ritieni A, Maes J, Meca G. Evaluation of biological and antimicrobial properties of freezedried whey fermented by different strains of Lactobacillus plantarum. Food Funct. 9: 3688-3697 (2018) https://doi.org/10.1039/C8FO00535D
  32. Matsushita S, Iwami N, Nitta Y. Colorimetric estimation of amino acids and peptides with the Folin phenol reagent. Anal. Biochem. 16: 365-371 (1966) https://doi.org/10.1016/0003-2697(66)90168-0
  33. Okuda K, Kato S, Ito T, Shiraki S, Kawase Y, Goto M, Kawashima S, Hemmi H, Fukada H, Yoshimura T. Role of the aminotransferase domain in Bacillus subtilis GabR, a pyridoxal 5'-phosphate-dependent transcriptional regulator. Mol. Microbiol. 95: 245-257 (2015) https://doi.org/10.1111/mmi.12861
  34. Park YS. The production optimization of fermented black jujube enhanced with poly-${\gamma}$-glutamic acids by Bacillus subtilis and the production of functional fried batter with fermented substance. MS thesis, Keimyung University, Daegu, Korea (2016)
  35. Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M, Zhang S. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. Bulgaricus LB340. J. Dairy Res. 78: 72-79 (2011) https://doi.org/10.1017/S0022029910000889
  36. Rosenberg J, Ischebeck T, Commichau F.M. Vitamin $B_6$ metabolism in microbes and approaches for fermentative production. Biotechnol. Adv. 35: 31-40 (2017) https://doi.org/10.1016/j.biotechadv.2016.11.004
  37. Schumann W. Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 62: 137-189 (2007)
  38. Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ. Evaluation of improved ${\gamma}$-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 98: 2138-2149 (2015) https://doi.org/10.3168/jds.2014-8698
  39. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-${\gamma}$-glutamic acid: synthesis, production and applications. Chem. Rec. 5: 352-366 (2005) https://doi.org/10.1002/tcr.20061
  40. Woo SH, Jhoo JW, Kim GY. Antioxidant activity of low molecular peptides derived from milk protein. Korean J. Dairy Sci. Ani. Resour. 29: 633-639 (2009) https://doi.org/10.5851/kosfa.2009.29.5.633
  41. Yamatsu A, Yamashita Y, Maru I, Yang J, Tatsuzaki J, Kim M.. The improvement of sleep by oral intake of GABA and Apocynum venetum leaf extract. J. Nutr. Sci. Vitaminol. (Tokyo). 61: 182-187 (2015) https://doi.org/10.3177/jnsv.61.182
  42. Yang HS, Jo JH, Choi YJ, Jung HK, Park TY, Jin SW, Choi BS, Seo KS, Huh CK. Preparation of a functional drink by mixed fermentation of oak mushrooms extract and whey. Korean J. Dairy Sci. Technol. 32: 111-119 (2014)
  43. Yu W, Chen Z, Ye H, Liu P, Li Z, Wang Y, Li Q, Yan S, Zhong CJ, He N. Effect of glucose on poly-${\gamma}$-glutamic acid metabolism in Bacillus licheniformis. Microb. Cell Fact. 16: 22 (2017) https://doi.org/10.1186/s12934-017-0642-8