DOI QR코드

DOI QR Code

Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process

  • Laziz, Noureddine Ait (Laboratoire de Nanomateriaux pour l'energie et l'environnement (LN2E)- Universite Cadi Ayyad) ;
  • Abou-Rjeily, John (Faculte des Sciences, Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite Francois Rabelais) ;
  • Darwiche, Ali (Institut Charles Gerhardt, CNRS UMR 5253, Universite de Montpellier) ;
  • Toufaily, Joumana (Laboratory of Applied Studies for Sustainable Development and Renewable Energy (LEADDER), MCEMA, Lebanese University) ;
  • Outzourhit, Abdelkader (Laboratoire de Nanomateriaux pour l'energie et l'environnement (LN2E)- Universite Cadi Ayyad) ;
  • Ghamouss, Fouad (Faculte des Sciences, Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite Francois Rabelais) ;
  • Sougrati, Moulay Tahar (Institut Charles Gerhardt, CNRS UMR 5253, Universite de Montpellier)
  • 투고 : 2018.07.20
  • 심사 : 2018.08.07
  • 발행 : 2018.12.31

초록

Natural graphite is obtained from an abandoned open-cast mine and purified by a simple, eco-friendly and affordable beneficiation process including ball milling and flotation process. Both raw graphite (55 wt %) and its concentrate (85 wt %) were electrochemically tested in order to evaluate these materials as anode materials for Li-ion and Na-ion batteries. It was found that both raw and purified graphites exhibit good electrochemical activities with respect to lithium and sodium ions through completely different reaction mechanisms. The encouraging results demonstrated in this work suggest that both raw and graphite concentrates after flotation could be used respectively for stationary and embedded applications. This strategy would help in developing local electrical storage systems with a significantly low environmental footprint.

키워드

참고문헌

  1. G. Zubi, R. Dufo-Lopez, N. Pardo, G. Pasaoglu, Energ. Convers. Manag., 2016, 122, 439-448. https://doi.org/10.1016/j.enconman.2016.05.075
  2. Geographical Assessment of Solar Resource and Performance of Photovoltaic, Technology Joint Research Centre, European Commission (PVGIS), 2016.
  3. A. El Fathi, L. Nkhaili, A. Bennouna, A. Outzourhit, Energ. Convers. Manag., 2014, 86, 490-495. https://doi.org/10.1016/j.enconman.2014.05.045
  4. M. Herstedt, L. Fransson, K. Edstrom, J. Power Sourc., 2003, 124(1), 191-196. https://doi.org/10.1016/S0378-7753(03)00603-7
  5. K.A. Striebel, A. Sierra, J. Shim, C.-W. Wang, A.M. Sastry, J. Power Sourc., 2004, 134(2), 241-251. https://doi.org/10.1016/j.jpowsour.2004.03.052
  6. J. Park, S.S. Park, Y.S. Won, Electrochim. Acta, 2013, 107, 467-472. https://doi.org/10.1016/j.electacta.2013.06.059
  7. S. Megahed, B. Scrosati, J. Power Sourc., 1994, 51(1-2), 79-104. https://doi.org/10.1016/0378-7753(94)01956-8
  8. H. Zhao, J. Ren, X. He, J. Li, C. Jiang, C. Wan, Solid State Sci., 2008, 10(5), 612-617. https://doi.org/10.1016/j.solidstatesciences.2007.10.017
  9. K. Zaghib, X. Song, A. Guerfi, R. Rioux, K. Kinoshita, J. Power Sourc., 2003, 119, 8-15.
  10. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev., 2011, 111(5), 3577-3613. https://doi.org/10.1021/cr100290v
  11. J. Sangster, JPED, 2007, 28, 571-579. https://doi.org/10.1007/s11669-007-9194-7
  12. K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sourc., 2013, 243, 585-587. https://doi.org/10.1016/j.jpowsour.2013.06.057
  13. B. Jache, P. Adelhelm, Angew. Chem. Int. Ed., 2014, 126(38), 10333-10337. https://doi.org/10.1002/ange.201403734
  14. H. Kim, J. Hong, Y. Park, J. Kim, I. Hwang, K. Kang, Adv. Funct. Mater., 2015, 25(4), 534-541. https://doi.org/10.1002/adfm.201402984
  15. S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, J. Gutzmer, Min. Proc. Extr. Metal. Rev., 2016, 37, 58-68. https://doi.org/10.1080/08827508.2015.1115992
  16. M.C. Furstenau, G. Jameson, R. Yoon Eds, in "Froth Flotation a Century of Innovation" Publisher: Society for Mining, Metallurgy, and Exploration, 2007.
  17. M. Hochberg Renewable Energy Growth in Morocco. Available from: https://www.mei.edu/sites/default/files/publications/PF26_Hochberg_Moroccorenewables_web.pdf.
  18. A. EL Gharmali, (Ph.D. thesis) Marrakech, Morocco: University Cadi Ayyad, 2000.
  19. Y. Taha, M. Benzaazoua, R. Hakkou, M. Mansori, Miner. Eng., 2017, 107, 123-138. https://doi.org/10.1016/j.mineng.2016.09.001
  20. S. El Baz, M. Baz, M. Barakate, L. Hassani, A. El Gharmali, B. Imziln, Sci. World J., 2015, 2015, 731834.
  21. L. Bokobza, J.-L. Bruneel, M. Couzi, C, 2015, 1(1), 77-94.
  22. P. Gillet, A. Le Cleac'h, M. Madon, JGR: Solid Earth, 1990, 95(B13), 21635-21655.
  23. D. Krishnamurti, Proc. Indian Acad. Sci., 1958, 47, 276-291. https://doi.org/10.1007/BF03052811
  24. T. Ganetsos, T. Katsaros, P. Vandenabeele, S. Greiff, S. Hartmann, Int. J. Chem. Mater. Res., 2013, 3, 5-9.
  25. S. Gunasekaran, G. Anbalagan, S. Pandi, J. Raman Spectrosc., 2006, 37(9), 892-899. https://doi.org/10.1002/jrs.1518
  26. M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, J. Electrochem. Soc., 2015, 162(13), A7008-A7014. https://doi.org/10.1149/2.0021513jes
  27. M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc., 2000, 147(4), 1245-1250. https://doi.org/10.1149/1.1393344
  28. E.M.C. Jones, O.O. Capraz, S.R. White, N.R. Sottos, J. Electrochem. Soc., 2016, 163(9), A1965-A1974. https://doi.org/10.1149/2.0751609jes
  29. M. Yoshio, R.J. Brodd, A. Kozawa, eds., Lithium-Ion Batteries: Science and Technologies, Springer-Verlag, New York, 2009.
  30. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 2000, 38(2), 183-197. https://doi.org/10.1016/S0008-6223(99)00141-4
  31. T. Kajita, T. Itoh, Phys. Chem. Chem. Phys, 2017, 20, 2188-2195.