DOI QR코드

DOI QR Code

일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법

An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode

  • 최윤정 (한국과학기술연구원 물질구조제어연구센터) ;
  • 주재백 (홍익대학교 화학공학과) ;
  • 김상훈 (한국과학기술연구원 물질구조제어연구센터)
  • Choe, Yun Jeong (Materials Architecturing Research Center, Korea Institute of Science and Technology) ;
  • Ju, Jeh Beck (Department of Chemical Engineering, Hongik University) ;
  • Kim, Sang Hoon (Materials Architecturing Research Center, Korea Institute of Science and Technology)
  • 투고 : 2017.12.11
  • 심사 : 2017.12.26
  • 발행 : 2018.02.10

초록

하폐수 고도산화처리(AOP, advanced oxidation process) 중 하나인 펜톤산화법과 전기화학적 방법을 결합한 전기펜톤산화법의 cathode에 stainless steel mesh (SUS mesh)를 적용하였다. 난분해성 물질인 염료 methylene blue (MB) 용액에 대해서, SUS mesh의 표면 처리 및 산화철 코팅 여부에 따라 전기펜톤산화 처리의 효율이 어떻게 달라지는지를 비교, 분석하였다. MB분해 반응의 효율 비교를 통해 mesh 표면에 코팅된 산화철의 양이 많을수록 전극의 촉매 특성이 높아짐을 확인하였고, 이는 전극표면에서 in situ로 발생하는 과산화수소의 발생량이 높아지는 것과 연관이 있었다. 전류-전위 순환법(CV)을 통해 개발된 전극의 전기화학적 특성을 평가해 본 결과, mesh 표면에 코팅된 산화철의 양이 많을수록 전기화학적 산화-환원 특성 또한 개선되었고, 이것이 우수한 전기펜톤산화 전극으로서의 성능과 밀접한 관계가 있음을 확인하였다.

A stainless steel mesh was applied to the cathode of an electro-Fenton system. Methylene blue (MB) solution was chosen as the model waste water with non-biodegradable pollutants. For the model waste water, the degradation efficiency was compared among various SUS mesh cathodes with different surface treatments and magnetite coatings on them. With increasing amount of the magnetite coating on SUS mesh, the degradation efficiency also increased. The improved electro-catalytic characteristic was explained by the increased amount of in situ generated hydrogen peroxide near the cathode surface. Cyclic voltammetry data also showed improved electro-catalytic performance for SUS mesh with more magnetite coatings on them.

키워드

참고문헌

  1. M. M. Assadi, Kh. Rostami, M. Shahvali, and M. Azin, Decolorization of textile wastewater by Phanerochaete chrysosporium, Desalination, 141, 331-336 (2001).
  2. P. V. Nidheesh and R. Gandhimathi, Comparative Removal of Rhodamine B from aqueous solution by electro-Fenton and electro-Fenton-like processes, Clean (Weinh), 42, 779-784 (2014).
  3. S. Naskar, S. A. Pillay, and M. Chanda, Photocatalytic degradation of organic dyes in aqueous solution with $TiO_2$ nanoparticles immobilized on foamed polyethylene sheet, J. Photochem. Photobiol. A, 113, 257-264 (1998).
  4. W.-Y. Park, Y.-S. Kim, and S.-h. Kong, A study on treatment of phenol by Fenton's reaction using magnetite, Theor. Appl. Chem. Eng., 2, 2179-2182 (1996).
  5. Young Sun Mok, Jin-Oh Jo, Seok Tae Kim, Woo Tae Jeong, Duk-Won Kang, Byong-Ho Rhee, and Jin Kil Kim, Decomposition of hydrogen peroxide in Fenton systems, J. Korean Soc. Environ. Eng., 29, 68-73 (2007).
  6. T. M. Do, J. Y. Byun, and S. H. Kim, Magnetite-coated metal foams as one-body catalysts for Fenton-like reactions, Res. Chem. Intermediates, 43, 3481-3492 (2016).
  7. M. C. Pereira, L. C. A. Oliveira, and E. Murad, Iron oxide catalysts: Fenton and Fenton-like reactions - a review, Clay Miner., 47, 285-302 (2012).
  8. T. M. Do, J. Y. Byun, and S. H. Kim, An electro-Fenton system using magnetite coated metallic foams as cathode for dye degradation, Catal. Today, 295, 48-55 (2107).
  9. K. Kosaka, S. Matsui, S. Echigo, and K. Shishida, Comparison among the methods for hydrogen peroxide measurements to evalutat advanced oxidation processes: Application of a spectrophotometric method using copper (II) ion and 2,9-dimethyl-1,10-phenanthroline, Environ. Sci. Technol., 32, 3821-3824 (1998).
  10. H. Pyenson and P. H. Tracy, A 1,10-Phenanthroline method for the determination of iron in powdered milk, J. Dairy Sci., 28, 401-412 (1945).
  11. Ch. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, and F. Yu, Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway, Water Res., 70, 414-424 (2015).
  12. Y.-R. Zhang, Sh.-Q. Wang, Sh.-L. Shen, and B.-X. Zhao, A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition, Chem. Eng. J., 233, 258-264 (2013).