Abstract
A cavitator plays an important role to generate the supercavity. Most previous numerical and experimental studies have been focused on the presence of cavitators alone. However, the body behind the cavitator causes a change in the wake flow and hence it affects generation and growth of the supercavity. In this paper, we present a boundary elementary method based on a potential flow analysis, and calculate characteristics of the supercavity formation depending on the change of the body shape of two-dimensional submerged objects. Various parameters such as cone angle of the cavitator, length of the forehead and diameter of the body are considered. The results show that the longer the forepart length, the longer the cavity is created under the same conditions, and also the change in the diameter of the body is the most influential factor on the growth of the supercavity. As a result, we suggest that it is necessary to carefully consider the influence of the body shape during the initial design stage of the supercavitating underwater vehicle.