References
- T. Aoki, On the stability of the linear transformation in the Banach space, J. Math. Soc. Jap. 2 (1950), 64-66.
- J. Brzdek, Stability of additivity and fixed point methods, Fixed Point Theory and Appl. 2013 2013:285, 9pages.
- J. Brzdek, Note on stability of the Cauchy equation - an answer to a problem of Th.M. Rassias, Carpathian Journal of Mathematics, 30 (2014), 47-54.
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lec. Notes in Math. Springer, Berlin, 580, 1977.
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
- H.-Y. Chu, D. S. Kang, and Th. M. Rassias, On the stability of a mixed n-dimensional quadratic functional equation, Bull. Belg. Math. Soc. 15 (2008), 9-24.
- H.-Y. Chu, A. Kim, and J.-S. Park, On the Hyers-Ulam stabilities of functional equations on n-Banach spaces, Math. Nachr. 289 (2016), 1177-1188.
- H.-Y. Chu, A. Kim, and S. K. Yoo, On the stability of generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14.
- H.-Y. Chu and S. K. Yoo, On the stability of an additive set-valued functional equation, J. Chungcheong Math. Soc. 27 (2014), 455-467.
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
- H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory and Appl. 2012 2012:81, 17pages.
- G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqtions, Appl. Math. Lett. 24 (2011), 1312-1316.
- B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
- C. Park, D. O'Regan and R. Saadati, Stability of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914.
- M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequationes Math. 85 (2013), 111-118.
- M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables, Results Math. 64 (2013), 1-12.
- H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- J. M. Rassias, On appoximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, 43 (1998), 89-124.
- F. Skof, Proprieta locali e approssimazione di operatori, Rend. Semin. Mat. Fis. Milano, 53 (1983), 113-129.
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.